byre:

]

Sre s

To:
L e cadbamman

”r
H

o
<

v

T

iy
R

S

%

_Ja.‘ﬂ‘.am.ﬂwgv %,
o

Lo

1,
5

CONNECTIONIST
MODELS

Proceedings of the 1990 Summer School

NOOO /¢4~ PO - T — /843
ONR

Edited by:

David S. Touretzky (Carnegie Mellon University)
Jeffrey L. EIman (University of California, San Diego)

Terrence J. Sejnowski (Salk Institute and
University of California, San Diego)

Geoffrey E. Hinton (University of Torento)

P

~ * MofdahKaufmann Publishers, Inc.
2929 Campus Drive, Suite 260

San Mateo, Cdlifornia 94403 91' ..".. 963!64
[

91 8 05 035
|

-
.

Sponsoring Ediitor Bruce M. Spatz

Production Editor Sharon E. Montooth

Cover Designer Victoric Ann Philp

Typesetter Technically Speaking Publications

L.ibrary of Congress Cataloging—in—-Publication Data

Connectionist models : proceedings of the 1990 summer school / edited
by David S. Touretzky ... [et al.].
p. cm.

Proceedings of the Connectionist Models Summer School held at the
University of California at San Diego.

Inciudes bibliographical references and index.

ISBN 1-55860-156-2

1. Connection machines—-Congresses. 2. Neural networks (Computer
science)--Congresses. I. Touretzky, David S. 1II. Connectionist
Models Summer School (1980 : University of California, San Diego)
QA76.5.C61938 1991

006.3--dc20 80-21144
CcipP

ISBN 0-55860-156-2
MORGAN KAUFMANN PUBLISHERS, INC. kosession For
2929 Campus Drive, Suite 260 NZIS GRasT (]7‘
San Mateo, Caiifornia 94403 ‘| DXIC TAB |
©1991 by Morgan Kaufmann Publishers, Inc. Unanpounced 0
All rights reserved. \ tifioat ,
Printed in the United States. %ﬁ‘%ﬂiﬁ:
No part of this publication may be reproduced, stored in a
retrieval system, or transmifted in any form or by any means— | Disgegpecl
electronic, mechanical, photocopying, recording. or othenwise— L, _4vailability Codes
without the prior written permission of the publisher. vVail and/ox

Digt Speaeial
ABCDEFGHIJK-RP-93210

Nl

————

CONTENTS

Part I MEAN FIELD, BOLTZMANN, AND HOPFIELD NETWORKS

Deterministic Boltzmann Learning in Networks with Asymmetric Connectivity
C.C. Galland and G. E. Hinton

Contrastive Hebbian Learning in the Continuous HopfieldModel
J. R. Movellan

Mean Field Networks that Learn to Discriminate Temporally Distorted Strings
C. K. I. Williams and G. E. Hinton

Energy Minimization and the Satisfiability of Propositional Logic
G. Pinkas

Part]I REINFORCEMENT LEARNING

On the Computational Economics of ReinforcementLearning
A.G. Bartoand S. P. Singh

ReinforcementComparison. o L ot Lt e e e
P. Dayan

Learning Algorithms for Networks with Internal and External Feedback
J. Schmidhuber

Part III GENETIC LEARNING

Exploring Adaptive Agency I. Theory and Methods for Simulating the Evolution of Learning .
G. F. Miller and P. M. Todd

The Evolution of Learning: An Experiment in Genetic Connectionism
D.]. Chalmers

Evolving Controls for UnstableSystems
A. P. Wieland

Part IV TEMPORAL PROCESSING

Back-Propagation, Weight-Elimination and Time Series Prediction
A. S. Weigend, D. E. Rumelhart, and B. A. Huberman

Predicting the Mackey-Glass Timeseries with Cascade-Correlation Learning
R. S. Crowder, 11

Learning in Recurrent Finite DifferenceNetworks
F.5.Tsung

Temporal Backpropagation: An Efficient Algorithm for Finite Impulse Response Neural
Networks v v o e e e e e e e e e e e e e e e
E.A. Wan

iii

Part V THEORY AND ANALYSIS

Optimal Dimensionality Reduction Using HevbianLearning 141
A. Levin

Basis-Function Trees for Approximation in High-Cimensional Spaces 145
T. D. Sanger

Effects of Circuit Parameters on Convergence of Trinary Update Back-Propagation 152

R. L. Shimabukuro, P. A. Sheemaker, C. C. Guest, and M.]. Carlin
Equivalence Proofs for Multi-Layer Perceptron Classifiers and the Bayesian Discriminant

FUncHOM . . . v v v i e i e s e e e e et e e e e e e e s e e e e e e e e e e e 159
J. B. Hampshire, Il and B. Pearlmutter

ALocal ApproachtoOptimalQueries oo v ... 173
D. Cohn

Part VI MODULARITY

A Modularization Scheme for FeedforwaidMetworks 183
A. Ossen

A Compositional Connectionist Architecture 188
J.R. Chen

Part VII. COGNITIVE MODELING AND SYMBOL PROCESSING
From Rote Learning to System Building: Acquiring Verb Morphology in Childrenand

Connectionist Nets v v v v i vt et e e e e e e e e e e e e e e e e e e 201
K. Plunkett, V. Marchman, and S. L. Knudsen
Parallel Mapping Circuitry ina PhonologicalModel 220

D. S. Touretzky

A Modular Neural Network Model of the Acquisition of Category Names in Children 228
P. G. Schyns

A Computational Model of Attentional Requirements in Sequence Learning 236
P.]. Jenningsand S. W. Keele
Recall of Sequences of ItemsbyaNeuralNetwork 243

S. Nolfi, D. Parisi, G. Vallar, and C. Burani
Binding, Episodic Short-Term Memory, and Selective Attention, Or Why are PDP Models Poor

atSymbolManipulation? 0L Lo 253
R. Goebel

Analogical Retrieval Within a Hybrid Spreading-ActivationNetwortk 265
T. E. Lange, E. R. Melz, C. M. Wharton, and K. |. Holyoak

Appropriate Usesof HybridSystems 277
D. E. Rose

Cognitive Map Constr iction and Use: A Parallel Distributed Processing Approach 287

P.L. Chrisley

Part VIII SPEECH AND VISION

Unsupervised Discovary of Speech Segments Using RecurrentNetworks 203
A. Doutriaux and D. Zipser
Featur2 Extraction Using an Unsupervised Neural Network 310

N. Inntrstor

Motor Control for Speech Skills: A Connectionist Approach 319
R. Laboissiére, J-L. Schwartz, and G. Bailly

Extracting Features From Faces Using Compression Networks: Face, Identity, Emotion, and

GenderRecognitionUsingHolons 328
G. W. Cottrell

The Development of Topography and Ocular Dominance 338
G.]. Goodhill

On Modeling Some Aspects of HigherLevel Vision 350
D. Bennett

Part IX BIOLOGY

Modeling Cortical Area 7a Using Stochastic Real-Valued (SRV)Units 363
V. Gullapalli
Neuronal Signal Strength is Enhanced by RhythmicFiring 369

A. Heirich and C. Koch

Part X VLSIIMPLEMENTATION

An Analog VLSI Neural Network Cocktail Party Processor 379
A. Heirich, S. Watkins, M. Alston, P. Chau
A VLSI Neural Network with On-ChipLearning 387

S. ¢. Day,and D. S. Camporese

Foreword

The forty papers in this volume cxemplify the tremendous breadth of rescarch under way in the ficld of
connectionist modeling. The interests of the summer school students and faculty range frum theurctical analysis of
networks to empirical investigations of lcamning algorithms, from speech and image prowcosing o wognilise
psychology, and from computational neuroscicnce to VLSI design. The papers selected fur the proceedings uffer an
intense, pithy snapshot of the state of the art in 1990.

When the first Connectionist Models Summer School was held at Carnegic Mellon in 1986, one of its goals was
10 help promising young graduatc students at institutions with few faculty working in the neurar =2t arca. The 1986
summer school attendees were in a sense pioncers. At that ime neural nets had not yet attained their prescnt status as
a “‘hot” rescarch topic; the Rumeclhart and McClclland PDP books weren’t even in print yct. Spiri., ran high during
the event, lasting friendships were formed, and some interesting rescarch was done on site.

By the time of the second summer school in 1988, the ficld had advanced markedly. That year we saw three
U.S. ncural net conferences and half a dozen workshops. The first neural net journal appeared, and u sccond was
announced. The raw pionecring spirit of the first summer school was perhaps diminished somewhat, but in
compensation, the level of sophistication of the students was Jearly increased, and the eathusiasm Ievel was as high as
cver. After the event was over, we found that the students had been holding cxtra sessiuns in their roums after dinner,
continuing sometimes until well pasi midnight.

We decided that the next summer school should be held on the west coast. Since Temry Sejnowski was moving
to UCSD, La Jolla was the obvious choice of venue. Jeff Eiman kindly volunteered to serve as organizer for the 1990
cvent. The rest of us (Scjnowshi, Touretzky, and Hinton) were his advisory committee, and collaboraied in the
production of this proceedings. Each student was assigned one of us as his or her editor, based cither un a draft paper
submitted prior to the summer schuol or our knowledge of the student’s interests. The papers they submutied were
then revised in response to detailed comments. The quality of the results is extremely high.

At the completon of this ycar’s summer school we devided it had been as successful as its predecessors, but it
had more of a workshop flavor and less that of a tutorial. The faculty of past summer schools found the workshup
aspects much to their liking, but the change this year was really a reflection of the advanced nature of the students,
who are already pursuing interesting research on a wide variety of topics. They are among the best and the brightest in
the neural nets game. Pictures of some of the atiendecs, taken by Timor Ash, appear at the back of the proceedings.

We would like to thank UCSD, the Office of Naval Research, the McDonnell-Pew Foundation, and the
MacArthur Foundation for spunsur.ng this event. Their gencrous support was imporian: to making the summer suhoul
asuccess. We are also grateful 10 Marilee Bateman and Sundra Buffeut of UCSD for cxcellent administrauve suppurt,
and to the grad stdents at UCSD for providing hospitality to the students and favulty. Kim Plunkeut did yeuman dut
in helping coordinate the logisucal arrangements. We would also like 1o thank Bruce Spaw. and Sharon Muntuuth at
Morgan Kaufmann for helping to make these proceedings possible.

Finally, we express our decp appreciadon to the faculty of the summer school. The faculty s dedication and
commitment to the scicnuifiv trainmg, of graduate students was apparent throughout. Without therr partiaipation, the
CMSS would not exist.

DAVID S. TOURETZKY JEFFREY L. ELMAN

Carncgic Mcllon University of California, San Dicgo
TERRENCE J. SESNOWSKI GEOFFREY E. HINTON

The Salk Institute, and University of Toronto

University of California, San Dicgo

Participants in the 1990
Connectionist Models Summer School

Organizer
Jeffrey L. Elman

Advisory Commitee

Geoffrey E. Hinton
Terrence J. Sejnowski
David S. Touretzky

Faculty

Andrew Barto, University of Massachusetts

Richard Belew, University of California, San Diego

Patricia Churchiand, University of Califomia, San Diego
Garrison Cottrell, University of Califomia, San Diego

Jack Cowan, University of Chicago

Richard Durbin, Stanford University

Jeffrey Elman (Organizing Commitiee). University of Californias, San Diego
Jerome Feldman, Intemational Computer Science Institute
David Haussler, University of Cdlifomia, Santa Cruz

Geoffrey Hinton (Organizing Commiitee), University of Toronto
Michael Jordan, Massachusetis Institute of Technology
Shawn Lockery, University of Califomia, San Diego

James McClelland, Camegie Meilon University

George Lakoff, University of California, Berkeley

Carver Mead, Cdlifomia Institute of Technology

Janet Melcalfe, University of California, San Diego

Randal Nelson, University of Rochester

bavid Rumelhart, Stanford University

Terrence Sejnowski (Organizing Commiittee), Salk Institute
Martin Sereno, University of California, San Diego

Al Selverston, University of California, San Diego

Paul Smolensky. University of Colorado

David Touretzky (Organzing Commiitee), Camegie Mellon University
Alex Waibel, Carnegie Mellon University

Ron Williams, Northeastem University

David Zipser, University of California, San Diego

List Of Accepted Students

Alston, Michael, University of California, San Diego
Bailly, Gerard, Institut de la Communication Parlee
Barto, Andrew G., University of Massachusetts
Bennetlt, David, Brown University

Burani, Cristing, Isiituto Di Psicologia

Cailin, Michael J., Naval Ocean Systems Center
Camporese, Daniel S., University of Biitish Columbia
Chalmers, David J., Indiana University

Chau, Paul, University of Cdlifornia, San Diego

Chen, James R., University of Cdlifornia, San Diego
Chrisley, Ronald L., New College

Cohn, David, University of Washington

Cotirell, Garison W., University of California, San Diego
Crowder, R. Scolt, Camegie Mellon University

Day, Shawn P., University of British Columbia

Dayan, Peter, University of Edinburgh

Doutriaux, Antoine, University of California, San Diego
Galland, Conrad C., Universify of Toronio

Goebel, Rainer, University of Braunschweig

Goodhill, Geoffrey J., University of Sussex

Guest, Clark C., University of Califomnia. Son Diego
Gullapalli, Vijaykumar, University of Massachusetis
Hampshire, John B., Camegie Mellon University
Hinton, Geoffrey E., University of Toronto

Heirich, Alan, California Institute of Technology
Holyoak, Keith J., University of California, Los Angeles
Huberman, Bemardo A., Xerox PARC

Infrator, Nathan, Brown University

Jennings, Peggy J., University of Oregon

Keele, Steven W., University of Oregon

¥nudsen, Steen L., University of Aarhus

Koch, Chiristof, Califomia Institute of Technology
Laboissiere, Rafael, Institut de la Communication Porlee
Lange, Trent, University of Califomia, Los Angeles
Levin, Asriel, Yale University

Marchiman, Virginia, University of Califomnia, San Diego
Melz, Eric R., University of California, Los Angeles
Miiler, Geoffrey F., Stanford University

Movellan, Javier R., Camegie Mellon University

Nolfi, Stefano, Istituto Di Psicologia Del C. N. R.

Ossen, Amfried, Technical University of Berlin

Parisi, Domenico, Istituto Di Psicologia Del C. N. R.
Pearimutter, B., Carnegie Mellon Univesity

Pinkas, Gadi, Washington University

Plunkeft, Kim, University of Aarhus

Rose, Daniel E., University of California, San Diego
Rumethart, David E., Stanford University

Sanger, Terence D., Massachusetts Institute of Technology
Schmidhuber, Jurgen, Universitat Munchen

Schwarlz, J. L., Institut de la CommunicationParlee
Schyns, Philippe G., Brown University

Shimabukuro, Randy L., Naval Ocean Systems Center
Shoemaker, Patrick, Naval Ocean Systems Center

Singh, Sdfinder Pal, University of Massachusetts
Todd, Peter M., Stanford University

Touretzky, David S., Carnegie Mellon University
Tsung, Fu-Sheng, Univesity of California, San Diego
Vdllar, Giuseppe, Universita Di Milano

Wan, Eric A., Stanford University

Watkins, Steven, University of California, San Diego
Weigend, Andreas S., Stanford University

Wieland, Alexis, University of California, Los Angeles
Wharton, Charles M., University of California, Los Angeles
Williams, Christopher K.1., University of Toronto
Zipser, David, University of California, San Diego

xi

Part |

Mean Field, Boltzmann, and Hopfield Networks

Deterministic Boltzmann Learning in Networks with Asymmetric
Connectivity

Conrad C. Galland
Physics Dept.
University of Toronto
Toronto, Canada
M5S 1AT

Abstract

4

The simplicity and localits of the “con-
trastive Hebb synapse™ (CHS) used in Boltz-
mann machine learning makes it an attractive
model for real biological synapses. The slow
learning exhibited by the stochastic Boltz-
mann machine can be greatly improved by
using 2 mean field approximation and it has
been shown (Hinten, 19589) that the CHS also
performs steepest descent in these determin.
istic mean field networks. A major weakness
of the learning procedure, from 2 biological
perspective, is that the derivation assumes
detailed symmetry of the connectivity. Using
networks with purely asvmmetric connectiv-
ity, we show that the CHS still works in prac-
tice provided the connectivity is grossly sy
metrical so that if unit i sends 2 connection to
unit j, there are numerous indirect feedback
paths from j to i. long as the network
seftles to a2 stable State, we show that the
CHS approximates steepest descent 2nd that
the proportional error in the approximation
can be expeeted to decrease 2s the size of the
nefwork increases.

1 INTRODUCTION

The learning procedures used to train connectivnist
networks are often eniticized for having only superfi
cial relevance to real neural systems. The most widels
used procedure, bark-propagation, requires an ¢labo-
rate apparatus to correctly determine and distribute
the necessary error geadient information to the dif-
ferent weights of the net. When the sort of complex
feedback wiring common in real neural systems is in-
corporated, the learning becuines even mute involaed
(Pineda, 1987) and no attempt is made to justify 1t
biologically.

The CHS. on the other hand. siclds the correct o2
ror derivatives using only information lecal to rach

Geofirey E. Hinton
Computer Science Dept.
University of Toronto
‘Toronto, Canada
M5S 1A4

weight, and it can be applied readily to networks with
large degrees of feedback. However, based on the orig-
inal theors (Hinton and Sejnowski, 1956) symmetrical
connectisity appears necessary for the CHS to perform
gradient descent, and there is no evidence of such de-
tailed symmetry in the CNS.

2 DETERMINISTIC BOLTZMANN
LEARNING IN SYMMETRIC
NETWORKS

A mean field approximation (Glauber, 1963; Hopfield,
1984) was used by Peterson and Andersop (19587) to
replace the stochastic units of the original Bolizmann
machine with deterministic analog units, resullingina
significant improvement in learning ¢fficiency. Details
of basic DBM theory can be obtained from Hinton
(1939). In brief, 3 DBM with unit states in the range
[—1. 1] has mean field free cnergy

F = E-TH
= —Z il _Tzl(l;y} log (!_;5_)
124 :
1—y; -
iy zy)k"‘g(zy,)] "

where £ and H are the mean field encrgs and entropy.
The DBM settles to a low temperature minimum, F°,
where the states of the units are given by

1
% = tanh(z 3 yjery) &)
3

Detadled symmietry of the weights s assumed such that
iy, = iy,

Treating the weights as independent, the total deriva.
tive of £7° with re=oert o a particular weight is given
by

Galland and Hinton

d 8w,, 6y;,- Ow;;

The first term represents the effect of a weight change
on the frec energy with all unit states held constant.
The second term represents the effect on F* of a
weight change via the resultant changes in the equi-
librium states of the units. However, at the minimum,

OF*[8yr = 0 for all %, so that the second term van-
ishes, leaving

dl“u

m =~y Y (4)

If the probability of an output vector, O, given an
input vector, I, is defined as

~F*, T
e Fas
o FalT)

where F, is the minimum free energy settled to
with I, and Op clamped (positive phase) and F; the
minimum free energy with just I, clamped (negative
phase), then the CHS can be seen to change each
weight in proportion to the gradient of log P~ (Og|la).
Assuming T = 1,

P—(Oﬁ”a) =

(1og P7(Oplle)
3w,-,-

Awij = e(yf yf —v7y;) = (6)

where 3 and y; refer to the states of unit ¢ at the min-
imum settled to in the positive and negative phases.
Hence, by making ¢ small enough, the CHS will ap-
proximate gradient descent in the objective function

P*(0p)ls)

G= P*(Is,0p)log I 3 (7

oY P~

3 ASYMMETRIC NETWORKS

The assumption that w;; = wj; is not necessary in or-
der to define an energy function over the network. The
symmetry is required to allow each unit to compute the
derivative of a global quadratic energy function from
locally available information. Without syinmetry, the
natural dynamics of the activity levels do not consist
of following the gradient of the energy function.

Hopfield (1982) points out that nets with asymmetric
weights such that w,, # w,, can be described as hav-
ing a symmetric part, which defines the energy func-
tion, plus an anti-symmetric part, which can be con-
sidered as noise during settling. However, in nets with

completely asymmetric connectivity, where only one
of wi; and wj; is allowed to exist, the anti-symmetric
and symmetric parts are of equal magnitude. Simu-
lations demonstrate that deterministic networks with
randomly asymmetric connectivity typically settle to
a stable state, and that the anti-symmetric part of the
weight matrix affects which state is settled to.

3.1 THE CHS IN NETWORKS WITH
ASYMMETRIC CONNECTIVITY

In networks with detailed symmetry of the connectiv-
ity, the CHS, coupled with weight decay, will automat-
ically symmetrize initially asymmetric weights due to
the inherent symmetry of the learning procedure (Hin-
ton, 1989). It is not equally apparent why the CHS
should do anything sensible when applied in asymmet-
rically connected nets.

Consider the free energy of an asymmetrically con-
nected network with the energy term defined using just
the symmetric part of the weight matrix:

1
F=- Z (y‘yJ wij + YiY; w]:) TH (8)

x<J

In the calculation of F, all asymmetric weights that
come from permanently clamped units, like the inputs,
can simply be treated as symmetric, so that w;; = wj;.
For all other connections, only one of w;; and wj; is
non-zero, and the contribution to the energy term is
thus half that of the effectively symmetric weights.
This follows from the fact that an asymmetric con-
nection of weight w;; can be thought of as having a
symmetric part of %w,,, as well as an anti-symmetric
part of equal magnitude.

The dynamics of this network will typically consist of
settling to a stable state where equation (2) holds for
each non-clamped unit, and we designate the free en-
ergy of the network at this point as I**. However, this
stable state will no longer be at a minimum of the free
energy, so that 9F™/Qy; # 0. Expressed another way,
at the fixed point (assuming T = 1)

OFE |, OH

o 7 o ©)
However, we can say that

6F _oH

o o 1o

The left-hand side of equation (10) represents the ac-
tual total input to unit 4, and it can be considered
the unit’s estimate of the true 3E/Jy, derivative. Fig-
ure 1 shows the true values and unit estimates of this
derivative for a simple network.

Deterministic Boltzmann Learning in Networks with Asymmetric Connectivity

0B _ 1,
oy, ~ 2
5E
—_— = 0
9y,

oL 1
o Ewuy.i
oE
dy; = why;
Figure 1: The true, 2£, and estimated, £, vaiues
. H ay') y 8yi)

of the energy derivative for two asymmetrically con-
nected units.

We will use the F* of an asymmetrically connected net
to define the probability of an input vector given an
output vector as in equation (5), and then investigate
how close the CHS approaches gradient descent in the
objective function with the probabilities so defined.
Proceeding as in equation (3), the total derivative of
F* with respect to a particular weight is given by

dr* or* 28“ Oy

dw,-,- 8w,-,- k

. 0F OF 3y;,
—5YiyY; +;(ay}; ayk> awu ()

i

where s is 1 for a symmetric weight and & 3 for an asym-
metric weight. The difference between the true and
estimated energy derivatives is zero for a symmetric
network, and the CHS predicted weight changes per-
form exact gradient descent. For an asymmetric net-
work, this difference is not zero, and the second term
in equation (11) is ignored by the CHS. The larger the
proportion of weights that can be considered symmet-
rical, the smaller this difference will be, and the closer
the CHS will come to performing gradient descent. For
a given fan-in, fs, of truly asymmetric connections,
the difference between the true and estimated values
of the energy derivatives for a particular unit can be
expected to scale as

OE OF
Ay Omk|

k (lwijl) Ve (12)

where k is a proportionality constant, and (|w;[) is
the expected value of the magmtude of the weights.
The /J, term arises because the various w;;y; terms
can be expected to be random in sign, and hence to
sum as in a random walk.

We would like to determine how the error between the
true and CHS estimated gradients scales with increas-
ing fan-in. Following all weight changes in either the
positive or negative phase, the resultant change in the
free energy due to the first term in equation (11) is of
order

|AFcys|= (13)
where f; is the symn.etric weight fan-in, u is the total
number of unclamped units, and k; is some constant.
Using equation (12), the change in the free energy due
to the random effects of the weight changes via the
second term of equation (11) is of order

by (7)ot S

|AF,| = k2 (1Aul) (wil) Vi Ve (1)

where (|Ay;|) is the expected value of the change in
the stable state activiiies of the units as a result of all
the weight changes, and k» is some constant.

In order to maintain the same degree of “hardness” in
the network as the fan-in increases, it is necessary to
keep constant the expected value of the magnitude of
the total input to a unit. It would then be expected
that {Jw;;|) would scale as 1/+/F where f is the total
fan-in, and that (y? yJ) would be scale independent.

Thus, we obtain

|AFepsl =

AL =k (Aul) ‘/Tf

bu(zfa+ fu

In symmetric networks, the effects of changes in the
stable state values of the units can be neglected be-
cause the stable state is a local minimum of the free
energy. This is not the case for asymmetric nets, and
the difficult question of how (JAy;]) scales must be ad-
dressed. There are thiee plausible regimes:

o If (|Ay:]) does not depend on the number of con-
nections, then (assuming 'Lj'-'- is constant)

—_— |A C"T’ ﬂ; & 1
T AFzysl T Bfa+ EWTVE T (R fat f)VE
o If (|Ay;]) scales as /7, then
Vi 1

RN W

o If {|Ayi]) scales as f, then

. a

PR S NN

Ga'land and Hinton

O ' Output layer

CT?;O/{QQOO

Hidden layer

O/OOOOOO

T

® ®OO
O®®O

Input layer

Figure 2: The network architecture for the asymmet-
ric 4-bit shifter is shown including possible hidden-to-
hidden, hidden-to-output, and output-to-hidden con-
nections for three of the hidden units. 24 hidden units
are used in the 8-bit shifter, and 40 in the 16-bit
shif*

.The success of the CHS in simulations of asymmetric

networks suggests that, for certain architectures, the
erronecus side-effects can indeed be neglected. The
second regime seems most likely, and its scaling predic-
tion is consistent with performance results in networks
of increasing size. As detailed in the next section, sim-
ulations have also shown that, in the networks tested,
the CHS consistently chooses a trajectory in weight
space that has a strongly positive cosine with the true
gradient which can be computed by taking into ac-

.count the second term of equation (11).

4 SIMULATION RESULTS

The CHS was applied to asymmetrically connected
networks to solve the shifter problem. This is a non-
trivial second order problem that cannot be solved
without a hidden layer. The network architecture is
shown:in figure 2. There is full connectivity from the
input to the hidden layer, and for every pair of non-
input units, ¢ and j, exactly one of w;; and wj; is
chosen at random to exist. This extensive asymmet-
ric connectivity permits many possible closed loops in-
volving the hidden and output layers.

The task is to detect the sense of a shift between two
binary vectors where the second vector is generated
by shifting the first a single “pixel” to the right or left
using wraparound. In the positive phase, a binary vec-
tor and its left or right shifted image are clamped on
the inputs, with the output unit being correspondingly
clamped ‘off’ for left and ‘on’ for right. In the negative

70 T ¥ ¥ |
60}- B
j /
£
[
g
30+
/
/ o symmetrc
201 & asyimnenetric E
I/
1
10} E
0 A 4 i i
[¢] 4 8 12 16 20

slce of shiftor nutwork

Figure 3: Graph showing the number of training

epochs required to perfectly learn the task in various

sized shifters. Since the number of possible input vec-

tors increases dramatically with the size of the shifter,

the number of presentations per epoch is much higher
for the larger networks.

-phase, only the inputs are clamped. This is repeated °
for each case, with the weights changed after each pre-
sentation. This “on-line” training technique was used
in order to avoid the biologically less plausible storage
of gradients across all the training cases.

As can be seen from figure 3, the CHS successfully
trained various sized, asymmetncally connected, shift-
detecting networks. The learnmg performance was
compared with that obtained in symmetrical networks
of roughly the same complexity in terms of the num-
ber of weights and units. Since each pair of units is
effectively connected by two weights in the symmetric
case, the architecture of the symmetric shifters had
the same number of units in the same basic arrange-
ment as the corresponding asymmetric nets, but with
half of all the possible hidden-to-hidden and hidden-
to-outpué symmetric connections chosen at random.!
Figure 3 shows how the difference in learring perfor-
mance decreases with increasing network size, suggest-
ing a decrease in the proportional error of the gradi-
ent approximation as proposed in the previous section.
The error bars were obtained by running repeated ex- -
periments on networks with different random connec-
tivity patterns. Details of the simulations are given in
the Appendix.

It is difficult to decide whether to compare with a sym-
metric net having the same number of effects, as we have
chosen, or the same number of degrees of freedom. In fact,
increasing the number of hidden-to-hidden connections in
the symmetric net significantly slows learning, and it is
fastest with no such connections at all.

Deterministic Bol*zmann Learning in Networks with Asymmetric Coninectivity 7

b

Figure 4. The true and estimated dF*/dw,, gradients are displayed, in arbitrary order, for an asymmetric 4-bit
shifter late in learning, in (a) the positive and (b) the negative phases. The top and bottom rows of each pair
represent the true and CHS estimated values respectively. The size and colour of each square represent the
magnitude and sign of the gradient for each weight averaged over all cases.

Galland and Hinton

In order to test the accuracy of the estimated gradi-
ents determined by the CHS, the true dF* /dw;, gra-
dients were computed in both phases by measuring
the change in the stable point free energy following
perturbations to each weight. The true gradient thus
incorporates the effects of the changing stable state
activities of the units indicated in equation (11). Fig-
ure 4 shows the true and estimated gradients averaged
over all training cases for an asymmetric 4-bit shifter
in both the positive and negative phases. Clearly there
is good agreement, and the cosine between the two gra-
dients is typically strongly positive for the majority of
the learning process,

Simulations were performed to test whether the anti-
symmetric part of the weight matrix could simply be
ignored. After an asymmetric netvork had been suc-
cessfully trained on the shifter problem, each asym-
metric weight was replaced by a symmetric weight
of half the magnitude, effectively removing the anti-
symmetric component from each connection. When
tested on the training set, the new network gave re-
sults little better than chance.

An attempt was also made to train the shifter net-
works to perform a different task in which one of the
two input vectors was treated as the output. That
is, with both the reference vector and the shift bit
clamped, the net was to produce the shifted vector.
This re-arrangement of inputs and outputs markedly
decreases the number of connections that can be con-
sidered symmetric, and thus increases the error in the
CHS predicted gradients. As a result, all attempts to
train the networks to learn this task were unsuccessful.
Preliminary results suggest that problems with multi-
ple output units in asymmetrically connected nets can
be solved using the CHS so long as there are correla-
tions between the output units across cases.

5 DISCUSSION

We have shown that the CHS is able to solve a dif-
ficult second order problem in asymmetrically con-
nected networks. By removing the strict requirement
of detailed symmetry, the CHS becomes considerably
more attractive as a possible model of real biological
synapses.

For asymmetrically connected networks, the anti-
symmetric part of the weight matrix affects the set-
tling of the network and, hence, the required gradi-
ents. Although the CHS only performs exact gradient
descent for a symmetric net, the effects of the random
changes in the stable state activities of the units can
be neglected in problems that have a significant num-
ber of effectively symmetric weights. Further research
is needed to establish the magnitude of this unwanted
effect, and precisely how it depends on the architecture
of the network and the nature of the problem.

Acknowledgements

This research was supported Ly grants from the On-
tario Information Technology Research Center, the
Medical Research Council of Canada and the National
Science and Engineering Research Council of Canada.
Geofirey Hinton is a fellow of the Canadian Institute
for Advanced Research.

References

Glauber, R. J. (1963) Time-dependent statistics of the
Ising Model. Journal of Mathematical Physics, 4:2,
294-307.

Hinton, G. E. (1989) Deterministic Boltzmann learn-
ing performs steepest descent in weight-space. Neural
Computation, 1.

Hinton, G. E. and Sejnowski, T. J. (1986) Learning
and relearning in Boltzmann machines. In Rumel-
hart, D. E., McClelland, J. L., and the PDP group,
Parallel Distributed Processing: Ezplorations in the
Microstructure of Cognition. Volume 1: Foundations,
MIT Press, Cambridge, MA.

Hopfield, J. J. (1982) Neural networks and physical
systems with emergent collective computational abili-
ties. Proceedings of the National Academy of Sciences
U.S.A., 79, 2554-2558.

Hopfield, J. J. (1984) Neurons with graded response
have collective computational properties like those
of two-state neurons. Proceedings of the National
Academy of Sciences U.S.A., 81, 3088-3092.

Peterson, C. and Anderson, J. R. (1987) A mean field
theory learning algorithm for neural networks. Com-
plex Systems, 1, 995~1019.

Pineda, F. J. (1987) Generalization of backpropaga-
ticn to recurrent neural networks. Phys. Rev. Lett.,
18, 2229-2232.

APPENDIX

Table 1 shows typical learning schedules used to train
the various shifter networks, where ¢ is the learning
rate given in equation (6). On-line learning was used
exclusively, with no storage of gradients across cases,
and all weights were initialized to random values be-
tween —0.5 and 0.5.

The 1000 training cases used in the 16-bit shifter were
randomly selected from the much larger set of all pos-
sible shifted vectors. Since the details of the connec-
tivity were determined randomly, there were occasions
when particular networks required slightly different
learning schedules, but the values given in the table
were generally successful.

A four step annealing schedule was usually employed,
where T = 15,5,1 and 0.5. An initial T = 25 step was

Deterministic Boltzmann Learning in Networks with Asymmetric Connectivity 9

Table 1: Learning Schedules for the Shifter Networks

Network learning number
type schedule of cases
4-bit 24

symmetric | € = 0.01
to completion
asymmetric | € = 0.005
to completion
8-bit 504
symmetric | ¢ = 0.005 for 40 epochs,
0.001 to completion
asymmetric | € = 0.005 for 40 epochs,
0.001 to completion
16-bit 1000
symmetric | ¢ = 0.002 for 50 epochs,
0.001 for 5 epochs
0.0005 to completion
asymmetric | € = 0.001 for 60 epochs,
0.0005 to completion

found helpful in the 16-bit symmetric network. At
each temperature, the network was settled to a stable
state using a synchronous, discrete time approxima-
tion of the set of differential equations

dy; 1
— ==t tanh(T ; Yjwi;) (15)

This was accomplished by damping each unit so that,
after each synchronous update, the unit activities
would be given by

%) = (1-«a)tanh (51; Zyj(t - l)w,-,-)
+ayi(t-1) (16)

for o between 0 and 1. 12 synchronous updates were
employed at each temperature in all the 4- and 8-bit
shifters, with o = 0.5. The 16-bit shifters required 14
synchronous updates with an & of 0.6. The 4-bit sym-
metric shifters generally required fewer updates and
less damping than the comparable asymmetric nets,
but this difference largely disappeared in the larger
nesworks.

Contrastive Hebbian Learning in the Continuous Hopfield Model

Javier R. Movellan
Department of Psychology
Carnegie Mellon University

Pittsburgh, Pa 15213

email: jm2z+@andrew.cmu.edu

Abstract

This paper shows that contrastive Hebbian,
the algorithm used in mean field learning, can
be applied to any cuntinuous Hopfield model.
This implies that non-logistic activation func-
tions as well as self connections are allowed.
Contrary to previous approaches, the learn-
ing algorithm is derived without consider-
ing it a mean field approximation tv Boltz-
mann machine learning. The paper includes
a discussion of the conditions under which
the function that contrastive Hebbian mini-
mizes can be considered a proper error func-
tion, and an analysis of five different train-
ing regimes. An appendix provides complete
demonstrations and specific instructions on
how to implement contrastive Hebbian learn-
ing in interactive activation and competition
models (a convenient version of the continu-
ous Hopfield model).

1 INTRODUCTION

In this paper we refer to interactive activation net-
works as the class of neural network models which have
differentiable, bounded, strictly increasing activation
functions, symmetric recurrent connections, and for
which we are interested in the equilibrium activation
states rather than the trajectories to achieve them.
This type of network is also known as the continuous
Hopfield model [6]. Some of the benefits of interactive
activation networks as opposed to feed-forward net-
works are their completion properties, flexibility in the
treatment of units as inputs or outputs, appropriate-
ness for solving soft-constraint satisfaction problems,
suitability for modeling cognitive processes [9}, and the
fact that they have an associated energy function that
may be applied in pattern recognition problems [13].
Contrastive Hebbian Learning(7] (CHL), which is a
gencralization of the Hebbian rule, updates the weights
proportionally to the difference in the crossproducts

10

of activations in a clamped and a free running phase.
This modification of the Hebbian learning, first ap-
plied by Hopfield to improve the storage capacity of
discrete content addressable memories without hidden
units [5)], appears in the Boltzmann learning algorithm
[1] and its mean field approximation [11}{3]. This pa-
per shows that Hinton’s observation that CHL depends
on a performance measure [3] can be generalized to
any case of the continuous Hopfield model. Contrary
to previous approaches, the derivations do not pre-
sume the existence of Boltzmann machines approxi-
mated with mean field networks. The paper includes
a discussion of the conditions under which the function
that CHL minimizes can be considered a proper error
function, an analysis of undesirable effects that may
occur in CHL learning, and a classification of training
regimes that minimize these effects.

The paper is divided in two sections and one appendix.
Section 1 describes the dynamics of the activations in
interactive networks. Section 2 shows how to modify
the weights for the stable states of the network to re-
produce desired patterns of activations. The original
contribution in this paper are:

o To show that CHL works with anv continuous
Hopfield netwerk and thus that self-connections
as well as non-logistic activation functions are al-

‘I L
weva

o .. show that the principles involved in the mean
field learning algorithm can be derived indepen-
dently of the Boltzmann Machine.

o To show that except for the case where there are
no hidden units, the function that CHL minimizes
is not a proper error function but that in practice
there are training regimes that make it work as
such.

For completeness we present some of the classical
proofs provided in Hopfield [6]. The appendix con-
tains mathematical details and specific comments on
how to implement Contrastive Hebbian Learning in
interactive networks.

Contrastive Hebbian Learning in the Continuous Hopfield Model

2 STABILITY OF ACTIVATIONS

Since mteractive networks have recurrent paths, it is in
principle possible that their activations never stabilize.
Fortunately, if some simple conditions investigated by
Hopfield [6] are met, we can guarantee that the acti- -
tions will settle, and that at equilibrium they wil’ «-
at a minimum of an Energy function.

Let the activation vector aT = [a;,...a5], be rore
by bounded, monotonically increasing, diffete.. .bf',
activation functions fi()- Let W = Lyvl, ..Wp] be -1
matriz: of connections, where the w] [wiiy-w,
are bounded, fan-in weight row vectors. Let d()/dt ir:
derivatives with respect to time, net; = al wy, »:
rest = f(0). Define a continuous Hopfield Ene-
function (6]

F=FE4S§ 03]
where
1 n n
E=-za'Wa= -3 Za;w,,a, (2)
i=l j=1
and
n a,
§= f7(e) da 3)
i=1 rest

It can be shown that E, which ref. ..s the constraints
imposed by the weights in the network, tends to drive
activations to extreme values '. On the other hand, S
1 o penalty function that tends to drive the activations
to a central value (the resting point). In principle we
are interested in activation states that minimize E for
they are maximally harmonious with the information
encoded in the weights. As we will study later, varying
the relative importance of E vs. S as the activations
settle may help achieve maximally harmonious (mini-
mum E) states. In the appendix it is shown that if the
activation functions are the standard (0-1) logistic, F
becomes the Helmholtz free energy function as defined
in 3].

Hopfield [6] showed that if the network is governed by
the set of differential equations

dfi'l(a,-) _
dt

and the weights are symmetric, the activations stabi-
lize in 2 minimum of F. For completeness, 1 present

A(=fi¥a)+nety); i=1l.n (4)

'If self connections are allowed, minima in £ may also
occur for intermediate activation values.

in the appendix a version of Hopfield's proof and show
that stability in a global minimum can also be achieved
with the following equation, typically used in interac-
tive activation networks [8][9} [10]

d a;
—= =X ((—ai + fi(net;)) (5)
Notice that if we apply either equation 4 or 5, on equi-
lik ium (when the derivatives are zero),

f,:l(ﬁ,-) = net; (6)
where (*) represents equilibrium. These properties

will be used to derive the learning algorithm in the
nexi section.

3 CONTRASTIVE LEARNING

Learning is viewed as the modification of connections
between units so that the stable states of the network
reproduce desired patterns of activations. We will see
that CHL iinimizes a contrastive function J 2 and
then we will discuss the conditions under which mini-
mization of J guarantees learning.

Define a pattern p as the pair p = {a/(+),a9%(H)},
where I stands for input set, O for output set, and (+)
indicates that the activation of these units are fixed
by the pattern. In connectionist terms a®(*) is the
teacher vecter. We will say that p has been learned if
clamping the input units to a/(+) then

50(_) = aO(-{-) (7)

where %9/ denotes the activation of the output set
when inputs are clamped and outputs are free. Note
that in this form of supervised learning we are only
interested in the outputs obtained after equilibrium is
achieved and not in the trajectories followed to equi-
librium.

Define the contrastive function J as

J = Ft+) _ =) (8
where F(+) and F(=) respectively are the values of the
energy functions at equilibrium when the inputs and
outputs are clamped (+), and when the inputs are
clamped and outputs are free (). Notice that)
has the same free parameters that F(+), the activa-
tions of the hidden units, plus some additional free
parameters, the activations of the output units. As-
sume that, over the working region of activation states,
F has a unique minimum.3. Thus, since the mini-
mum is unique F(Y) > F3 and if J = 0, then

2Based on different arguments, Hinton [3] showed that
CHL minimizes the equivalent of J when the activation is
logistic.

3This assumption, which is shared with Boltzmann
lcarning, Mean Field Learning, and the Almeida-Pineda
algorithm is discussed in section 4.

11

12

Movellan

§9(=) = a9(+). This makes J a potential candidate
for learning by gradient descent on weight space. In
particular, following the derivations detailed in the ap-
pendix, we have

8E _— Y
aT,',' = -—aiqj —;Z:Jlnetk(-aw—ij), i#j (9
OE 1., =~ . QG . .
-aTij- = —Eai—-’;netk(aw), 1= (10)
85 1. Od
R R A

=1

And following equation 6 it is easy to see that

oF e v g

aT,-,- = —8§;dj; t#£7] (12)

aF

a_w,-; = —50,(1] y 1= (13)
(14)

making
B L()50-) _ 815
-é;;oca‘ -8 (15)

which shows that the contrastive Hebbian learning rule

Awg; o EHEH — 5(Dal) (16)

descends in the J function.

4 DISCUSSION

We have seen that CHL minimizes the contrastive
function . .
J = F) _ p=) (17)

so that afier each learning step, the difference in en-
ergy at equilibrium between the clamped and free
states becomes smaller. At this point we will study the
conditions under which J can be considered a proper
error function.

An important property of error functions is that they
decrease as the difference between the obtained and
the desired states decreases. CHL guarantees that the
difference between ecnergies in the clamped and free
phases will become smaller but as we will see this
does not always guarantee that the difference between
the clamped and free state activations will decrease.
If both FH) and F(~) have a unique minimum (e.g.
when there are no hidden units) and since in the (-
) phase there are more free parameters to minimize
F than in the (4) phase it follows that J cannot be

smaller than zero and that when J = 0 the activa-
tions in the free and clamped phase are equal. In this
case, J is a proper error function. In the appendix it
is shown that if there are no hidden units CHL is in
fact equivalent to backpropagation learning.
However, if there are multiple minima in F, we can
no longer guarantee that a local minima in the free
phase will have lower energy than a local minima in
the clamped phase. One way to avoid this problem
is to use training regimes that maximize the prob-
ability that the activations in both the free-running
and the clamped phase equilibrate in the same region
of attraction of F() space. A way to visualize how
CHL works is to imagine the energy surface over ac-
tivation space as a membrane with several minima.
CHL pushes down the minimum corresponding to the
clamped case and pulls up the stable states for the
free phases. If both stable states are in the same at-
tractor, afiar several learning trials, both minima con-
verge. What follows is a brief analysis of five different
training regimes:

e Case 1: Activations are reset o random numbers
after each learning phase. In this case, the start-
ing points for the clamped and free phase are dif-
ferent and, very likely the stable states will also be
apart. Under this condition, CHL learning does
not work well.

e Case 2: First seltle for the clamped phase, and
then, without reselting activations, free the outpul
unils and seltle again. This procedure guarantees
that F(+) > F(-) and that when () = F(-) the
activations on the free and clamped phases are the
same. Gradient descent on J assures that when
the minima for the clamped phase is achieved, if
the output unit activations are free, they will not
change. This form of learning, which can be used
for recognition of familiar patterns, is very rapidly
achieved with CHL (it just takes about 3 trials to
"recognize” the XOR or the 4-3-4 encoder pat-
terns). Unfortunately, if we just clamp the input
units without information about the teachers, in
general the activations will not converge to the
desired minima.

o Case 3: Setlle during the free phasc and then,
withoul reselting aclivations, clamp the oulput
unils and reseltle again.

This scheme minimizes the probability that the
clamped and frec phases ¢nd up in different re-
gions of atiraction. In general this procedure
works well and achieves learning speeds compara-
ble to backpropagation. There are two phenom-
ena though that sometimes occur [3]. Occasion-
ally the network may settle in a different attractor
than the one to which it had converged in previ-
ous trials. This may result in a sudden change in
activations and and a temporary "unlearning” of
the weights. In figure 1 it can be secn a typical

Contrastive Hebbian Learning in the Continuous Hopfield Model

1.2

o \

c 1

2 uf J

E .

mO.Sj

| E

3 R

o 0.6

A i

g .l

m0.4_

)]

g .

w 0.2 \

z : L\L L e ~.J\ﬂ
0 4+t

0 50 100 150 200 250 300
TRIALS

Figure 1. Typical learning curve for the XOR problem.

learning curve with these temporary unlearning of
the patterns. It is our experience that as learning
progresses these sudden jumps to other minima
tend to diminish. Another problem is that if the
the clamped and free phases stabilize in different
regions, the energy of the clamped phase may be-
come lower than the energy in the free phase. If
this happens, learning usually deteriorates, mak-
ing it advisable to start with a different set of
weights. Figure 2 shows the energy functions gen-
erated after training a simple network, with an
input unit, a hidden unit and an output unit, to
learn the 1-1-1 encoder problem. It can be seen
that as learning progresses a minimum is created
at the desired state (output unit activation =1)
but that a spurious local minimum is also cre-
ated. If in some trial the activations equilibrate
in that local minimum abrupt distortions in the
learning curve and temporary unlearning of the

desired activations may occur 4.

e Case 4: Sharpening Schedules S.
As we previously mentioned if there is a unique
global minimum of F(=) and of F(+), and the ac-
tivations settle into this minimum then the con-
trastive function J can be considered a proper er-
ror measure. One way of decreasing the likeli-
hood of settling into spurious local minima is the
use of sharpening schedules. Sharpening sched-

4Since the networks we are considered so far are deter-

-1 Output 1 - Output 1
Figure 2. Contour curves of the free energy function as
learning progresses. Note that although initially there is a
unique minimum, eventually an spurious local minimum is
generated.

ules modify the gain or sharpness of the activa-
tion functions as the settling of the activations
proceeds. Usually we start with low gain (flat ac-
tivation functions) and progressively increase it.
The rational for this procedure is as follows: De-
creasing the sharpness of the activation functions
is equivalent to weighting more heavily the S part
of the free energy as defined in equation 1 6. Fig-
ure 3 shows the effect of sharpening on the er-
ror function learned for the I-1-1 encoder problem
mentioned in Case 3. For large decay values (low
gain) the spurious local minima dissapear. Ide-
ally, we start settling the activations with appro-
priately large decay values that get rid of the spu-
rious local minima but allow the global minimum
to survive. Then we let the activations settle to-
wards this global minimum and slowly guide them
away from rest values by progressively decreasing
decay (increasing gain). Peterson and Anderson
{11] and Peterson and Hartman{12] call this pro-
cedure anncaling for it is a mean field approxi-
mation to annealing schedules of discrete Boltz-
mann machines. 1 have decided to use the term
sharpening schedules as defined in {2] to clarify
the fact that sharpening does not have anything
to do with increasing the randomness of the net-
work as one would expect of annealing schedules

13

ministic, the settling state is determined by the final state.

However, slight weight modifications made by the learning —_—

algonthm may be sufficient to make the activations settle “In the interactive activation and competition model

in completely different attractors 110] this is controlled by a the decay parameter. If logistic
*I thank Conrad Galland for showing me the role that activations arc uscd, sharpening is achieved by controlling

sharpening schedules play in contrastive Hebbian learning. the gain of the activation functions.

Movellan

Decay = 0.5

-

Outrput 1 7

-1 Output 1 -1

Decay = 4.0

g

Hidden

—

-1 1 -1 1

Output Output

Figure 3: The energy function for different degrees of
sharpening. In this case sharpening is controlled by a de-
cay parameter. Note how for low sharpening levels spurious
minima disappear

7, Although sharpening schedules are not strictly
necessary for CHL to work, there are reasons to
believe that they improve learning performance.

e Case 5: Anncaling schedules: In search of
the continuous Bollzmann machine. Annealing
schedules are another method for avoiding spu-
rious minima. Annecaling schedules progressively
decrease the randomness of the activations as set-
tling progresses. This may be achieved in interac-
tive networks by injecting some form of noise (e.g.
logistic noise) to the net input of each unit. The
standard deviation of the noise distribution plays
a similar effect to the temperature parameter in
discrete Boltzmann machines. Case 1 in this dis-
cussion can be viewed as a particular case of an-
nealing schedule in which the standard deviation
of noise is very large for the initial cycle (produc-
ing a random starting point) and then goes to zero
on the next cycle (making the network determin-
istic). Using slowly decreasing annealing sched-
ules may improve the likelihood of settling in the
best minimum and avoiding spurious ones. It can
be shown that this settling method defines a con-

"The term “sharpening”™ 15 not without problems cither
for it conceals the fact that sharpening is a mean field ap-
proximation to true anncaling. Another possible term is
“mean field annealing™ but this may be confused with the
true annealing method as discussed in case 5.

tinuous state hidden Markov model (a diffussion
process). The activation settling algorithm can
be seen as an approximation to gradient descent
of the expected value of the Hopfield energy func-
tion F. The appropriate learning algorith should
use the difference in the equilibrium expected val-
ues of the activation crossproducts in the clamped
and free running phase.

A nice property shown in the appendix is that
if logistic noise is added to the net input, the
limiting behavior of interactive networks as the
sharpness of the activation functions increases is
given by the discrete Boltzmann machine. This
property may be used to implement both Boltz-
mann machines and continuous interactive net-
works with the same program.

In spite of its problems and the fact that more
research is needed before using it for large scale
problems, CHL is a promising, simple to imple-
ment learning method that works for a wide vari-
ety of interactive architectures. In Table 1 appear
the results of simulations using CHL with the ac-
tivation update rule of the Interactive Activation
and Competition model. [10].

5 APPENDIX
5.1 S AND THE MEAN FIELD ENTROPY
TERM

The entropy term of the energy function proposed by
Hinton [3] for the Mean Field Algorithm is

= " (ailoga; + (1 - ay)log (i —ai)). (18)

i=1

If we use the standard logistic (0-1) activation func-
tion,

1
y—‘ 1+e_:/T (19)
whose inverse is
z=T log (-y—) (20)
I-y

then

n Yy y
3 /O Tlog (1—_—”) dy (21)
i=1 0o

=Ty ((ylogy+ (1 -y)log(1 - y)) - log0.5) (22)

i=1

5.2 S AND THE INTERACTION
ACTIVATION AND COMPETITION
MODEL

The activation update rule of the interactive activation
and competition model (IAC) as defined in [9] is

Aa, = A((mazr - a,) net, - (a, - rest)decay) , net 20
(23)

Contrastive Hebbian Learning in the Continuous Hopfield Model

Aa,- =X ((a,—
which can be derived from equation § applied to the
following activation function

_ maz net; + rest decay
nel; + decay

;net 20 (25)

min net; — rest decay
net; — decay

where max is the maximum value of the activation,
rest the activation when the net input is zero, min the
minimum value of the activation, and decay a positive
constant. And applying equation 3, it is easy to see
that

;net <0 (26)

a; =

5=3Y_8; (27)
i=1
with
mazx — rest
Si= decay((ma:: - rest) Iog (m) (28)
— (a; — rest)); a; > rest (29)

— min) (30)

rest —man
+(a; —rest)); a; < rest (31)

Si = decay((min — rest) log (

with the decay parameter assuming the same function
than gain in the logistic model.

5.3 HOPFIELD’S PROOF OF THE
STABILITY OF ACTIVATIONS

Hopfield showed that if the network is regulated by
equation 4 it will stabilize. This is done by showing
that the Hopfield model has an associated Lyapunov
function. Here, a similar argument is used to show
that using equation 5 the network also stabilizes. To
facilitate the calculation of the derivatives of E, we
collapse into @ the part of F that does not depend on
a;,

E=-= Z Zakwua: (32)

k"l =1

= —§(a,-w,-;a,- + ai(kz=l axWix (33)
+ Z aiwi) + Q) (39

l#|

and considering that the weights are symmetric,

—

mlm
2=

n

2a;wii + 22 arwix | = —net; (35)
k=1
ks

1
)

— min) net; — (a, — rest) decay) ; net <0 Regarding S, since the derivative of the integral of a
24

function is the function itself
6.5'

B = f71() (36)
and
oF _OFE 63 -1
0 aa, o+ — %; —net; + 7 (a:) (37)
If we make
da,
5 = A (—a; + f(nety)) (38)
then, applying the chain rule,
dF ar day
Z 6ak dt (39)

=Y A(-net + fi (ax)) (—ax + f(nety)) (40)

k=1
but since fi is monotonic, (—net + f; }(ax)) has the
same sign as (—f(netr) + ax), making
dF
dt

Since F is bounded and on each time step F decreases
then

(41)

. dF
T = (42)
and since equation 39 shows that
dF day oF
—(17_04=> T —04:&5—;—0 ik=1,.
(43)
then da;
‘l_l.rgo 7 ~=0;k=1,. (44)

which tells us that the activations will tend to equilib-
rium as time progresses and that on equilibrium they
are in a minima of F.

5.4 SMOOTHING NET INPUTS VS.
ACTIVATIONS

Equation 4 can be discretized as

AN aig) = A (=f7 o) +netiy) (45)
or

F N asern) = (= Nf7 i) + Anetiy (46)
equivalently, equation 5 would be discretized as

ai(e+1) = (1 - /\)a,-(,) + /\f(nei,-(l)) (47)

Equation 46 is an exponential smoothing of the net
input. The activation function is then applied to
this smoothed net. Another possibility, represented
in equation 47, is to apply the activation function to
the instantancous net input and then to exponentially
smooth these activations.

15

16

Movellan

5.5 THE DERIVATIVES OF THE
EQUILIBRIUM POINTS OF F

First consider the weights that connect different units.
Extracting the cross products with a w;; term. We
have

B=— ’”U“J'*'Z Z drwndr | (48)

k l#l SH k REFRY
and considering that w;; is the only weight depending
on w,-,-.

oF a; 5 d;

DO re

——61,;,-]. = -——(2“:(1] +2w;:al a + 2w Wy, a, ow wi; (49)
a' aak
+Z Z wu(ak + drg)) (50)
=1 kJA#i,) k RE3A

Reorganizing terms considering that the weights are

symmetric,
oF 1
=195 +2 - -
2L g (s +23 2 S) 0

which easily leads to equatlon 9. Similar arguments
can be applied to derive equation 10. Eqguation 11 is
easy to obtain by applying the chain rule and the fact
that the derivative is the inverse of the integral.

5.6 CONTRASTIVE HEBBIAN AND
BACKPROPAGATION LEARNING
ARE EQUIVALENT WHEN THERE
ARE NO HIDDEN UNITS

The backpropagation weight update equation is
Awg; « I; f'(a;)(t; — aj) (52)
where w;; is the weight connecting input unit ¢ with
output unit j, f/ the derivative of the activation func-
tion, and ¢; the teacher for output unit j. The con-
trastive Hebbian weight update is
Aw;; o i v(+) (+) v(")af_-) (53)
Since the input units are clamped in both phases, they
are not influenced by the output units and the equilib-
rium point of the activations would be the same as in

sackpropagation. Taking this into consideration and
reorganizing terms we have

Aw; o< 8(EH ~ &) (54°
where a{t)

;"7 is the same as the teacher, and aﬁ*’ the
clamped input. Since the derivative of the activation
function is always positive (for strictly increasing ac-
tivation functions), the cosine of the angle between
the update vectors in backpropagation and contrastive
Hebbian is positive and therefore they both minimize
the same error function. Since there are no hidden
units, the error function has a unique minima and thus
the final learned solutions will be equivalent in both
backpropagation and contrastive Hebbian.

5.7 INTERACTIVE NETWORKS WITH
LOGISTIC NOISE APPROXIMATE
BOLTZMANN MACHINES AS THE
SHARPNESS OF THE ACTIVATION
FUNCTIONS INCREASES

As sharpening increases, the activation function con-
verges to a threshold function

a; = maz;net; >0 (55)
a; = min;net; <0 (56)

where maz is the upper bound of the activation, min
the lower bound, and net, has an added logistic noise

2
component () with variance v >

net; = al w;+ o (67)
It follows that
Prob(a; = maz) = Prob(net, > 0) (58)

=1- Prob(s < —a'{ w;) (59)
1
1
T 1 4e-@FT W)IT (61)

which defines 2 Boltzmann machine.

5.8 SKETCH OF THE MAIN ROUTINES
OF A CONTRASTIVE HEBBIAN
PROGRAM

. Get a training pattern.
. Reset activations to rest and net inputs to zero.
. Clamp inputs to desired pattern.

e QS N

. Settle activations according to equations 23 and
24. The program may provide some facility for
sharpening schedules (changing the decay or gain
parameter through settling), and annealing sched-
ules (changing the standard deviation of noise
added to the net inputs).

5. Collect cross products of activations multiplied by
a negative constant.

6. Clamp also the output units to the desired pat-
tern.

7. Settle activations according to equations 23 and
24.

8. Collect cross products of activations multiplied by
a positive constant,

Termination of settling may be done after a fixed num
ber of iterations (let us say 30), or after the changes
in activations are smaller than a certain criteria (e.g
biggest activation change is smaller than 001) Bel
low is an example of a settling cycle using the update
function of the IAC model [9].

Contrastive Hebbian Learning in the Continuous Hopfield Model

Jor(i=1; i< number_of_ units; i++){
Jor(i=1; i< number_of units; j++){

) nelfi] = nelfi] + w(jjfi]*activationfj] ;

if(netfi] > 0) actfi] = actifi] + lambda*((actimar
-acifi]) *netfi] - decay*(actifi]-rest));
else actifi] =actifi] -+ lambda*((actilt] - actimin)*neifi]
- decay*(actifi]-rest));
if(actifi] > maz) actifij=maz;
if(actift] < min) actifif=min;

Where max is the maximum value of the activations,
min the minimum value, rest the activation when net
is zero, lambda the stepsize of the activation change
(smoothing constant}, and decay a positive constant.
We have obtained good results with actimax =1.0, ac-
timin = -1.0, rest =0.0, decay =0.1, lambda = 0.2.

This is an example of a weight change routine
for(i=1; < number_of_unils; i++)

for(j=1; < number_of-units; j++){

weghi_change[i]fj] = weight_change[ilfj] + phase
epsilon afif*afj] ;
}
}

Where phase is (+1) for the clainped case and (-I)
for the free case. Epsilon is the stepsize of the weight
change. Weights may be updated after each phase,
each pattern or after a batch of patterns. Table 1
may be used to standardize new implementations of
the algorithm.

stepsize
1dden u. 10 0.1 0.01 0.001
1 19 (0 3 (0 246 (3) 1 2300 (10)
2 13 (0 15 (U) 72(1) | 2300 (7
4 55 (3 20.5 (0) | 40.5 (0) | >300 (6)
[47 (1 23 (0) 21 (0} 245 (4)
16 2300 (10) | 98.5 (0) | 24.5 (0) 142(1)

Table 1: Results for the XOR problem. Networks were
fully connected (including selfl connections). There
were 10 simulations per cell with different starting ran-
dom weights from 2 uniform (-0.5 to 0.5) distribution.
Qutside parenthesis are median number of epochs un-
til maximum absolute error was smaller than 0.2. In
parenthesis are nwmnber of simulations in which learn-
ing took longer than 300 epochs. Learning was on
batch mode. Update of activation was done accord-
ing to the IAC equations with the following parame-
ter values: max=1.0, min=-1.0, rest=0.0, decay=0.1,
lambda= 0.2. Update of aclivations was stopped af-
ter the change in all the activations was sihaller tha»
0.0001 or the number of cycles bigger than 100. No
annealing or sharpening wes used

Acknowledgements
This research was founded by the MSF grants: BNS

§8-12048 and BNS 86-09729. This paper would not
have been possible without the suppert and motivat-
ing ideas of James McClelland and his research group
at Carnegic Mellon University. I also thank Geoffrey
Hinton, Conrad Galland and Chris Williams for their
advice and helpful comments.

References

{1} Ackley D, Hinton G and Sejnowski T (1985) A
learning algorithm for Boltzmann machines. Cog-
nilive Science, 9, 147-169.

[2] Akiyama Y, Yemashita A, Kajiura M, Aiso H
(1689) Combinatorial Optimization with Gaus-
sian Machines, Proceedings of the Inlernational
Joint Csnference on Neural Helworks 1, 533-540.

{3] Hinton G E (1989) Deterrinistic Boltzmann
Learning Performs Steepest Descent in Weight-
Space, Neural Computation, 1, 143-150.

{4] Hopfield J (1982) Neural Networks and Physical
Systems with emergent collective computational
abilities. Proceedings of the National Acedemy of
Science USA, 79, 2254-2558.

[5] Hopfield J, Feinstein D, Palmer R (1983) Unlearn-
ing has a stabilizing effect in collective memories.
Nature 304, 158-159.

[6] Hopfield J (1984) Neurons with graded re-
sponse have collective computational properties
like those of two-state neurons. Proceedings of the
National Academy of Sciences G.S.A., 81, 3088-
3092.

{7} Galland C, Hinton G (1959) Deterministic Boltz-
mann Learning in Networks with Asymmetric
Connectivity. University of Toronto. Department
of Computer Science Technical Report. CRG-TR-
§9-6.

{8] Grossberg S A (1975) A theory of visual coding,
memory, and development. in E Lecuwenberg and
H Buffart (Eds.) Formal Theories of tisual percep-
tion New York, Wiiley.

19; McClelland J, Rumelhast D (195! An Interac
tive Activation Model of Context Effects in Letler
Perception: Part 1. An account of Basic Findings.
Psychological Reziew, 88, 5.

{10} McClelland J Rumelhart D (1959) Interactive
activation and Competition. Chapter II of Ex-
plorations in Parallel Distribuled Processing: A
Handbook of Modcls, Programs, and Exercises
Cambridge, MIT Press.

[11] Peterson C, Anderson J R (1957) A mean ficld
theory learning algorithm for ncural networks.
Complex Systems, 1, 985-1019.

[12} Peterson C, Hartman E (1989) Explorations of
the Mean Field Theory Learning Algorithm. Nea-
ral Nelicorks, 2, 475-494.

{13} Williams C, Hinton G (1990} Mean field networks
that learn to discriminate temporally distorted
strings. Pre-Procecdings of the 1990 Cenneclion-
1st Models Summer School.

17

Mean field networks that learn to discriminate temporally
distorted strings

Christopher K. 1. Williams
Department of Computer Science
University of Toronto
10 King’s College Road
Toronto M5S 1A4, Canada

Abstract

Neural networks can be used to discriminate
between very similar phonemes and they can
handle the variability in time of occurrence
by using a time-delay architecture followed
by a temporal integration (Lang, Hinton and
Waibel, 1990). So far, however, neural net-
works have been less successful at handling
longer duration events that require sc
thing equivalent to “time warping” in oiu .
to match stored knowledge to the data. We
present a type of mean field network (MFN)
with tied weights that is capable of approx-
imating the recognizer for a hidden markov
model (HMM). In the process of settling to a
stable state, the MFN finds a blend of likely
ways of generating the input string given its
internal model of the probabilities of transi-
tions between hidden states and the probabil-
ities of input symbols given a hidden state.
This blend is a heuristic approximation to
the full set of path probabilities that is im-
plicitly represented by an HMM recognizer.
The learning algorithm for the MFN is less
efficient than for an HMM of the same size.
However, the MFN is capable of using dis-
tributed representations of the hidden state,
and this can make it exponentially more effi-
cient than an IMM when modelling strings
produced by a generator that itself has com-
ponential states. We view this type of MFN
as 2 way of allowing more powerful repre-
sentations without abandoning the automatic
parameter estimation procedures that have
allowed relatively simple models like HMM’s
to outperform complex Al representations on
real tasks.

Geoffrey E. Hinton
Department of Computer Science
University of Toronto
10 King’s College Road
Toronto M5S 1A4, Canada

INTRODUCTION

Neural networks have been successful at phoneme dis-
crimination tasks, but many researchers currently feel
that the best way to deal with ionger duration events
is to use a néural network as a front-end to a hidden
markov model. The difficult task of matching models
to data across temporal distortions is then handled by
the hidden markov recognizer which efficiently consid-
ers all possible matches.

Despite their powerful matching and learning proce-
dures, HMM’s have a serious drawback: They implic-
itly assume that the ensemble of input strings is gen-
erated by a stochastic finite-state automaton and this
strongly limits the types of structure that they can
efficiently represent. Suppose, for example, that 20
independent binary constraints operate between the
first and second half of a string and that as a result of
all these separate corstraints the mutual information
between the two halv.~ is 20 bits.! To model these
20 constraints, a hidden markov generator would need
at least 22° hidden states because the only way that
the first half of a string can constrain the second half
is via the hidden state of the generator as it finishes
generating the first half.

In a hidden markov generator, 22° hidden states im-
plies 220 hidden nodes. In a neural net that uses dis-
tributed representations, 22° hidden state vectors only
requires 20 binary hidden units. So if the mutual infor-
mation between the first and second half of each string
is genuinely componential, a neural network can be
exponentially more efficient in representing the con-
straints. In effect, the only way that a HMM can
deal with a set of independent constraints is to use
the cross-product of the HMM’s that would be needed
to capture each constraint separately, so it is unable to
take advantage of the fact that the constraint structure

! As a concrete example, we might suppose that the first
half of a sentence is singular or plural, active or passive,
past or present tense, abstract or concrete, etc. etc. and
that the second half “agrees” with the nist half along all
these dimensions.

Meau Field Networks that Learn to Discriminate T emporally Distorted Strings

can be factorized.

Our aim is tv develop a neural ne*work alternative to
HMM’s that can take advantag * constraints which
can be factorized by using sepa .e hidden units to
enforce separate constraints. To w.nieve this we have
been forced to use a matching prucedure that is only a
heuristic approximation to the recognition procedure
used in an HMM, and a learning procedure that is con-
siderable slower than the HMM learning procedure for
a comparably sized network. Eventually, we hope to
show that these disad.antages are more than offset Ly
the ability of the reural network to use a small repre-
sentation that captures the componential structure of
the constraints efficiently. In this paper, however, we
only show that the neural network can use distributed
representativns to capture the componential structure

and can generalize at least as well as a comparably
sized HMM.

PREVIOUS APPROACHES USING
NEURAL NETS

Bridle's alpha-net (Bridle, 1989) is a translation of a
HMM into a recurrent neural net framewuch. He shows
how to implement the forward pass calculavouns of a
HMM-based recogniser (using “sigma-pi” uniis with a
linear output) and he presents a gradient-based Lack-
propagation training method.

As Bridle points out, this implementation of a IIMM
in a neural network points the way forward to other
methods of constructing and training networks which
offer more general non-linear structures going beyond
HMM methods. Watrous (Watrous et al., 1990) and
Kuhn (Xuhn et al, 1989) have investigated training
recurrent networks for some problems in speech recog-
nition such as phoneme discrimination, using the back-
propagation learning rule. Others such as Williams
and Zipser (1988) and Cleeremans et al. (1989) have
looked at tasks which involve learning finite state au-
tomata with recurrent nets, but from the viewpoint of
predicting the next symbol given left context. How-
ever, to date the issues of “time-warping” have not
been directly addressed by this work.

These recurrent nets allow a “frame-by-frame” pro-
cessing of the incoming data. An alternative to this is
to “spatialize” time by laying out the data in an in-
put buffer - the method used in this paper. This has
a number of disadvantages, but does mean that all of
the input data is readily available, whereas in recur-
rent nets the information on the important properties
of the input must, be extracted and stored in the states
of the hidden units.

THE LEARNING PROCEDURE FOR
THE MEAN FIELD MODULES

We assume familiarity with mean field networks and
just give a brief overview here. Hopfield (1984) or Hin-
ton (1989) give more detailed descriptions. Mean field
networks use real-valued analog units with a logistic
activation function that can be viewed as a determin-
istic approximation to the stochastic binary units used
in Boltzmann machines. Mean field networks use a
parallel updating algorithm to settle to a local min-
imum of the mean-field free energy (Hopfield, 1984).
The mean field equivalent of simulated annealing is to
increase the gain of each unit as the network settles.
With low gains, the network will typically settle to a
state in which the units have intermediate activity lev-
els and, using an independence assumption, this state
can be viewed as representing a high entropy blend of
many possible binary states. In the model we describe,
each such binary state in the blend represents a possi-
ble way of aligning the model of a word, stored in the
tied weights, with the input data.

The input/output learning rule for MFN's (Peterson
and Anderson, 1987) is based on an approximation
of the Boltzmann machine learning procedure (Ack-
ley, Hinton and Sejnowski, 1985). The replacement
of stochastic binary units by deterministic real values
units permits much faster learning. Below we present a
different learning rule for use when the task is the clas-
sification of temporally distorted strings (which might
correspond to vector-quantised time-slices of speech
data) into one of .V possible “word” models (word is
in quotes as the entity may actually be a phoneme or
some other unit ~ word is used {or convenience only).

Eachi ...« hes il own mear ield mcdule which com-
putes a s.o.. Indicatin_ ".ow lik 1 it was that that
model could heve gener ‘¢ the ;. .tiul.t stiing pre-
sented. Each module ka. weight ¢c. rair*. as shown
in Fig. 1 that permit dynamuc tiue . urp.s ' asim-
ilar manner to HMMs. Tlen the vuid . cliosified
as belonging to the model that prc . acee the highest
score. The score ¢,(y) for module i when presented
with string y is

giy) = e~ F W) (1)

where F'* represents the free energy of the module at
a minimum of free energy. This minimum is attained
by performing the mean field equivalent of simulated
annealing from a high temperature to T = 1.

With activities of the units in the range [0, 1], a mean
field module has free energy

1 Al
F=-3 > npywy+T Y [pnp+(1-p) In(1-p,)]

i i
: o - ()
where p; is the activation of the unit 7. At a minimum

19

20

Williams and Hinton

time

slice 1

slice 2

slice 3

state

units

symbol

units

a

b a

Figure 1: Part of a MFN showing some of the weight constraints (not all weights to the symbol units are shown)

of F the activities obey
1
pi = 0(%) pywis) (3)
i

where o(z) is the logistic function o(z) = y3==-

At the minimum, the derivative of F,,, with respect to
a particular weight at T' = 1is given by (Hinton, 1989)

OF;, m
— . 4
aw]r_r;c < DjDPk > ()

where < >™ indicates that we are considering module
m. The learning rule for each module is based on in-
creasing the normalized score for those occasions when
the module is the correct generator of the string, and
decreasing it otkerwise. Define the normalized score
to be

Tie1 9 ()

Then the objective function to be maximized by the

training is
B= Z
y€examples
where 7 indexes the correct word cless. Differentiating
with respect to weight wjr in module m, we get

aB m
-a—w-v? = Z <pipr > [5im - 7'm] (7)

FAd ezamples

T‘i(y) =

Inri(y) (6)

where 6;,, is the Kronecker delta.

This gradient can then be used by steepest ascent, tech-
niques or more sophisticated line-search/conjugate-
gradient methods to maximize B. This learning pro-
cedure has the flavour of a rule that maximizes the
mutual information between the input vectors and the
classification, as it maximizes the r,(y)’s which take
into account the scores of the other modules, rather
than just maximizing the score of the correct class. In
fact, if the gi(y)’s represent the probability of mod-
ule ¢ producing string y, then the algorithm exactly
maximizes the mutual information.

THE TASK USED IN THE
SIMULATIONS

To test the learning algorithm shown above, two word
models were set up using HMMs with componential
structure. HMMSs were used because it is easy to gener-
ate and test data with IMMs, and because the Baum-
Welch training algorithm (Baum et al., 1970) is opti-
mal as a discriminant training procedure for data gen-
erated by HMMs (Brown, 1987). This means that we
can fairly compare learning by IMMs and the neural
networks.

Good datasets for discriminant tasks must have sim-
ilar zero order statistics (symbol frequencies), other-
wise good discrimination can be achieved by HMMs

]

Mean Field Networks that Learn to Discriminate T emporally Distorted Strings

with just one unit which simply detects the symbol
frequencies, even though the generating HMMs had
many more states. The data we used was generated
by the “cross-product” of two three state IIMMs. The
state transition diagram for the three state IIMMs is
shown in Fig. 2

/N

state transition

diagram

Figure 2: State transition diagram for the three state
HMMs

One three state HMM called the ABC model produced
symbols “a”, “b” and “¢” with high probability in
states 1, 2 and 3 respectively. The ACB model pro-
duced “a”, “c” and “b” in states 1, 2 and 3 respectively.
The probability of producing the correct symbol was
0.94, and the probability of producing the other sym-
bols was 0.03 . The transition from the start state to
each of the generating states was equiprobable, so that

strings generated were equally likely to begin with “a”,
“b” or “c”.

To make componential data, one dataset was produced
from the cross-product of two ABC models, and the
other dataset was produced from two ACB generators.
The symbols output by the cross-product HMMs are
related to the two component HMMs by the following
code

taaabbbeccec
:abcabcabe

genl output
gen2 output

combined output : 123456789

The symbol frequencies for each of the nine symbols
were similar between the data generated by the two
cross-product generators. Datasets of 1000 examples
of strings six symbols long genecrated by cach cross-
product IIMM were used as a training set, with test
and cross-validation sets also of 1000 examples cach.

First order Markov models gave 28 crrurs on the test
data. Nine state HMMs trained Ly the Baum-Welch
algorithm gave an average of 18.25 errors and six-state
HMDMs gave an average of 64.68 exrurs with a standard
deviativn of 8.70 on 16 runs, with a best performance
of 52 errors.

RESULTS AND DISCUSSION

Networks with six units in each hidden slice were
trained on the task. Two slightly different architec-
tures were tried. In one, the hidden units were parti-
tioned into two fully connected groups of three units
each, and the symbol units were fully connected to all
units. In the other, there was no such split, all six
hidden units being fully connected. The training was
carried out with a conjugate-gradient with restarts al-
gorithm, stopping when the number of errors on the
cross-validation set began to increase.

The results of the simulations were 29 and 41 errors on
the test data for two runs with the split weights, and
31 errors for a run with fully connected weights. These
are significantly better than the results of the six state
HMMs, indicating that componential structure is be-
ing discovered by the networks. Further proof of this
was found by analysing the unit activities. In some of
the split networks each group of three units was found
to develop a distributed coding of one of the compo-
nent generators’ state. For the network without a split,
the activities of the hidden units show that the state
of one of the components is represented by the activ-
ities of all six units, the other generator’s state being
indicated by small modulations in these activities.

It is hard for the MFN learning rule to compete
with the Baum-Welch algorithm when lcarning to dis-
criminate data generated by non-componential HMMs.
This is partly because the MFN learning rule is a step-
size dependent method of gradient ascent, rather than
a re-estimation algorithm.

With sequences generated by two three-state HMMs,
the potential benefits of MFNs are small because 3+ 3
is not much smaller than 3 x 3. We are working on
further simulations with data generated by pairs of
four-state M Ms, which should show the advantages
of the MFNs more clearly. It is also possible to de-
sign stochastic networks with architectures similar to
that of Fig. 1 that will produce data which cannot be
generated by IIMMs of polynomially related size.

Acknowledgements

Thanks go to Tony Plate fur help with the Xerion con-
nectionist simulator, and to Radford Neal fur his HMM
prograins. Steve Nuwlan, Lvan Steeg. Tony Plate and
Prof. Evangelus Milios provided helpful comments on
the M.Sc thesis version of this work.

21

22

Williams and Hinton

References

(1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski.
A learning algorithm for Boltzmann machines.
Cognitive Science, 9:147-169, 1985.

(2] L. E. Baum, T. Petrie, G. Soules, and N. Weiss.
A maximization technique occuring in the statis-
tical analysis of probabilistic functions of markov
chains. The Annals of Mathematical Siatistics,
41(1):164-171, 1970.

[3] J. S. Bridle. Alpha-Nets: A recurrent neural net-
work architecture with a Hidden Markov Model
interpretation. SP4 Research Note 104, Royal Sig-
nals and Radar Establishment, Great Malvern,
UK, 1989. To appear in Speech Communicalion
special Neurospeech issue, 1990.

[4] Peter Brown. The acoustic modelling problem
in Automatic Speech Recognilion. PhD thesis,
Carnegie-Mellon University, 1987. Also published
as IBM Research Division Technical Report RC
12750.

[6] A.Cleeremans, D. Servan-Schreiber, and J.L. Mc-
Clelland. Finite state automata and simple re-

current networks. Neural Computation, 1(3):372-
381, 1989.

[6] G. E. Hinton. Deterministic boltzmann learning
performs steepest descent in weight-space. Neural
Computation, 1:143-150, 1989.

[7] J.J. Hopfield. Neurons with graded response have
collective computational properties like those of
two-state neurons. Proceedings of the National
Academy of Sciences U.S.A., 81:3088-3092, May
1984.

(8] G. M. Kuhn, R. L. Watrous, and B. Ladendorf.
Connected recognition with a recurrent network.
In Proceedings Neurospeech, 1989. To appear in
Speech Commaunication special Neurospeech issue,

1990.

[9) K. J. Lang, A. H. Waibel, and G. E. Hinton.
A time-delay neural network architecture for iso-
lated word recognition. Neural Networks, 3:23-43,
1990.

[10] C. Peterson and J.R. Anderson. A mean field the-
ory learning algorithm for neural networks. Com-
plez Systems, 1:995-1019, 1987.

[11] R.L. Watrous, B. Ladendorf, and G. Kuhn. Com-
plete gradient optimization of a recurrent net-
work applied to /b/, /d/, [g/ discrimination. J.
Acoust. Soc. Am., 87(3):1301-1309, 1990.

[12] R. J. Williams and D. Zipser. A learning algs-
rithm for continually running fully recurrent neu-
ral networks. Technical Report ICS Report 8805,
University of California at San Diego, 1988.

Energy Minimization and the Satisfiability of Propositional Logic

Gadi Pinkas
Department of Computer Science
Washington University
St. Louis, MO 63130

Abstract

Interactive connectionist networks with sym-
metric weights (like Hopfield nets and Boltz-
man Machines), use gradient descent to find
a minimum for quadratic binary functions
called energy functions. We show an equiv-
alence between the problem of satisfiability
in propositional calculus and the problem
of minimizing those energy functions. The
equivalence is in the sense that for any sat-
isfiable Well Formed Formula (WFF) we can
find a quadratic function that describes it,
such that if “true” and “false” are mapped to
“one” and “zero”, respectively, then the set of
solutions that minimize the function is equal
to the set of models (truth assignments) that
satisfy the WFF. We also show that in the
same sense every quadratic energy function
describes some satisfiable WFF. Algorithms
are given to transform any propositional Well
Formed Formula into an energy function that
describes it and vice versa. Using Sigma-Pi
units we define high order energy minimiza-
tion models that are stable, and we show
equivalence between those high order mod-
els and quadratic ones. In fact we show that
Sigma-Pi units are not needed if additional
simple hidden units are added into the net-
work. An algorithm to convert high order
energy functions into low order functions is
used as a powerful tool to implement a satisfi-
ability problem solver on a connectionist net-
work. The results give better understanding
of the role of hidden units and of the limita-
tions and the capabilities of these interactive
connectionist models. The techniques devel-
oped here for the satisfiability problem may
be applied as well to a wide range of other
problems.

1 Introduction

The problem of satisfiability in propositional calculus
is to decide whether there exists a truth assignment
(a model) for the variables of a given propositional
well formed formula (WFF), such that the formula is
evaluated to be true. In many cases it is not enough
just to decide whether a WEF is satisfiable or not. A
truth assignment that satisfies it is also desired. It is
well-known that any of the problems in A”P can be
reduced to the satisfiability problem and that satisfia-
bility is NP— complete (Garey, Johnson 79).

Apart from its theoretical importance, satisfiability
has its direct applications. In the area of Al for ex-
ample, logic is used to represent knowledge, and in-
ference mechanisms are used to draw conclusions from
this knowledge. Inferring what must be the truth val-
ues of the atomic propositions for a knowledge base
to be consistent lets one further decide whether novel,
compound WFFs logically follow from the knowledge
base or contradict it. Thus, a connectionist system
that solves satisfiability can be used as the engine of a
theorem prover.

In this paper we prove an equivalence between the
satisfiability problem and the problem of energy min-
imization. The equivalence means that in order to
decide whether a WFF is satisfiable and to find a
truth assignment that satisfies it, we can find a global
minimum to some “quadratic binary” energy function
such that the values of the variables of this function
when the minimum is reached can be translated into
a model that satisfies the original WFF. Also, any
connectionist quadratic energy minimization problem
may be described as a satisfiable WFT that is satisfied
for the same models that cause the function to reach
global minima. Algorithms will be given for converting
any satisfiability problem into an energy minimization
problem and vice versa.

Finding minima for a “quadratic binary” function is
the essence of some connectionist models used for
parallel constraint satisfaction (llopfield 82),(Hopfield

23

24

Pinkas

84), (Hinton, Sejnowski 86). They are characterized by
recurrent network architecture, symmetric weight ma-
trix (with zero diagonal) and a quadratic energy func-
tion that should be minimized (Lyapunov function).
Each unit asynchronously computes the gradient of
the function and adjusts its activation value, so that
energy decreases monotonically. The network eventu-
ally reaches equilibrium, settling on either a local or a
global minimum. We call this family of models “energy
minimization” models. It has been demonstrated by
Hopfield and Tank (Hopfield, Tank 85), that certain
complex optimization problems can be approximated
by this kind of network, and some of the work done
in connectionist reasoning and knowledge representa-
tion has used these energy minimization models. (For
examples see: (Ballard 86), (Touretzky, Hinton 88),
(Derthick 87)).

There is a direct mapping between these models and
quadratic energy functions, and most of the time we
will not distinguish between the function and the net-
work that minimizes it. Thus, the equivalence between
energy minimization and satisfiability means that ev-
erything that can be stated as satisfiability of some
WFF and nothing more can also be expressed in these
connectionist models. The techniques described are
used in this paper for the direct implementation of a
satisfiability problem solver on connectionist networks,
however they may also be used for the application of
logic reasoning, construction of arbitrary associative
mermories, and other applications.

2 Satisfiability and models of
propositiona! formulas

A Well Formed Formula (WFF) is an expression that
combines atomic propositions (variables) and connec-
tives (V, A,,—,(,))- A model (or a truth assignment)
is a vector of binary values that assigns “one” (“true”)
or “zero” (“false”) to each of the variables. A WFF ¢
is satisfied by a model z if its characteristic function
Hyp evaluates to “one” given the vector Z.

The characteristic function is defined to be: H, :2" —
{0,1} such that:

. Hoylen,.oyan) =
H(.,(P)(xl,.. .,:cn) =1- H(p(zl, iy Zn)

H(golVSOz)(xl,.. .,:c,,) = H?l (2:1, . .,:c,,)

+ Hpy(z1,-. -, 2n) = Hpy (21,-..,%0)
X H¢p2(2:1,.. .,.'Bn)
H((pll\¢2)($l,...,$n) = H¢1(zl,...,xn)

X H¢p2(z1,.. .,z,,)

H(m—«pg)(xh vesTp) = He~pyvipa)(Z1s -+ 2y 2n)

We denote that a model Z satisfies ¢ by p(z) = 1.
The problem of satisfiability of a WFF ¢ is to find an
% (if one exists) such that ¢(Z) = 1.

3 Equivalence between WFFs

We call the atomic propositions that are of inter-
est for a certain application “visible variables”. We
can add additional atomic propositions called “hidden
variables” without changing the set of relevant models
that satisfy the WFF. The set of models that satisfy ¢
projected onto the visible variables is then called “The
set of visible satisfying models” (Z | (3)¢(z,1) = 1).

Two WFFs each with n visibie variables are equivalent
if the set of visible satisfying models of one is equal to
the set of visible satisfying models of the other.
Formally:

o1(1... 2oty ..) R opa(21... T, t .. t)) Of for
every model Z of zy,...,2Z5, 1, ..., ; that satisfies ¢,
there exists some truth assignment 7’ of ¢}, . . ., ¢}, such
that pa(z1... 24,1 ...1.) is satisfied and; for every
model & of z;,...,2,,1], ..., that satisfies po, there
exists a truth assignment f of the hidden variables of
t1,...,1 such that ¢;(z1,...,24,%,...,1) is satis-
fied.

Next we will see that every WFF ¢ is equivalent to a
WFF 9 in a conjunction of triples form.

4 Conversion of a WFF into
Conjunction of Triples Form (CTF)

A WFF ¢ is in CTF if o = AIZ, o; and every ¢; is a
sub-formula of at most three variables.

ExaMPLE 4.1 (AV(BV(-C))A(TV((~E)A(=B)))A
((-T) — C) is in CTF.

Every WFF can be converted into an equivalent WFF
in CTF. Intuitively, if a sub-formula has more then 3
variables, we generate a new hidden variable for every
binary logical connective (eg: V,A,—). We “name”
the binary logical operation with the new hidden vari-
able using the logical connective “if and only if” («~).
We perform this operation on the parse tree of the
sub-WFF bottom up, except from the top most binary
connective, each time we generate a new sub-formula
of only two binary connectives (the original and the
). The new hidden variables that we create are used
to refer branches of the parse tree that were converted
before. The sub-formulas are connected with boolean
AND (A). Thus each sub-formula has three variables
at most and the conjunction of all sub-formulas is in
CTF. A formal algorithm and proof is given in (Pinkas
90).

EXAMPLE 4.2 Converting ¢ = (((=(=A)) A B) —
((=C) — D)) into conjunction of triples generates:

Energy Minimization and the Satisfiability of Prapositional Logic

From ((—(—A))AB) we generate. (((=(~A))AB)~Ty).
From ((—C) — D) we generate: (((—-C) — D)oTz).
For the top most connective (—) we generate: (T} —
).

Th)e conjunction of these sub-formulas is :
((7(=A)) A B)=T)A(((=C) — D)=T:)A(T: — T).
It is in CTF and is equivalent to ¢.

5 Energy functions

A k-order energy function is a function E : {0,1}" —
‘R that can be expressed in a sum of products form
with product terms of up to k variables!. We denote
the sum of producte form for a k-order energy function
by:

E¥(z,,.. ©Zn)

= 21<i <ia<o<ig < Wity ix Tix * 0 T,

+ 1<i <o Cigmy S0 Wingeyinoa Tin i, +o
+ EiSiS“ wiTi + w

Quadratic energy functions are special cases of energy
functions in the form :

Z w;iTiz; + Z wiz; -+ w.

1€ig<j<n i<n

We can arbitrarily divide the variables of an energy
function into two sets (like we did to the WFFs in
section 3):

1. Vigible variables are usually of interest to an ob-
server. An instantiation of these “external” vari-
ables is considered to be an answer to the problem.

2. Hidden variables are usually not of interest to an
external observer.

We call the set of minimizing vectors projected onto
the visible variables, “the set of visible solutions” of
the minimization problem.

({z | GDE(,7) = ming g {E@T))))-

There is a direct mapping between the quadratic en-
ergy functions described above and connectionist net-
works with symmetric weights that minimize them,
like Hopfield nets and Boltzman machines. Given a
function we can create the network and given a net-
work we can generate the appropriate function. The
variables of the function map into nodes in a graph.
Each node is assigned a neuron unit and is connected
by symmetric arcs to other units. Unit 7 is connected
to unit j by a weight w iff the energy function includes
a term of the form: —wz,z,. A unit i has a non zero
threshold w iff the energy function includes a term of
the form: wz;.

ExAMPLE 5.1 The energy function £ = —-2NT —
2ST - 2WT +5T+2RN-WN+W +S-R-N

'The name “multi linear functions” is sometimes used.

is represented by the symmetric network that appears
in figure 1.

Figure 1: A quadratic network that represents the en-
ergy function £ = —2NT—-2ST-2WT+5T+2RN -
WN+W4S—R— N.Tisa hidden unit

Further, we can extend these interactive connection-
ist models to minimize also high order functions (Se-
jnowski 86). In the extended model the variables be-
come nodes in a hyper graph and a weighted term
Wi,...ix Ti, -+ i, becomes a weight —w;, _; of a sym-
metric hyper arc that connects the nodes: z;,,...,z;,.
Each node is assigned a Sigma-Pi processing unit
(Rumelhart, Hinton, McClelland 86) that updates its
activation value using:

a; = F(net;)

where F is the activation rule (threshold, sigmoid,
stochastic...) that is used in the model and

Z Wiy iy s H Ti;
fyoerioe 1<iSkiy#i

For example , the binary Hopfield model will set the
activation to one if net, > 0, to zero if net, < 0 and
will not change it if net; = 0.

net,- = -

A Sigma-Pi unit of order k multiplies up to k inputs
in each term it sums and considers the weight only if
all these inputs are ones. We can show that in the
extended model, like in the quadratic one, energy de-
creases monotonically and equilibrium is reached at
either global or local minimum. (The high order en-
ergy function is the Lyapunov). Note that the contin-
uous case (when values are allowed to be between zero
and one), is also captured in the extended model. The
lack of terms with powers of variables (like wXY2Z
or wY?) causes the minimizing solutions to be at the
corners of the unit hyper-cube.

26

Pinkas

EXAMPLE 5.2 The cubic energy function E =
—NSW+2RN-WN+W+S— R~ N is represented
by the hyper graph of figure 2. The units N,S,W
are connected by a hyper-arc and therefore they are
Sigma-P1 units.

Figure 2: A cubic network that represents F =
—NSW+2RN-WN+W+S—R—N using Sigma-Pi
units.

We'll see now that high order models are equivalent to
quadratic models and that there is a tradeoff between
the order and the number of hidden units.

6 The equivalence between high order
models and low order models

Infinitely many energy functions (networks) seem to
solve only a single minimization problem.

We call energy functions that have the same set of vis-
ible solutions, equzvaleni

Formally: E; is equivalent to E» (E), = L‘-_») iff
(z | GEGEDL) = mingE@D) = {& |

(30) B2, B) = min g {Ba(5, 1))

EXAMPLE 6.1 aXY +0YZ - XYZ »
2XT —2YT —2ZT + 5T for any a,b .

aXY +b0YZ -

We will show now that any high order energy function
is equivalent to a low order one with additional hidden
variables. An algorithm is given for the conversion of
a high order energy function to a low order one. In
addition, another algorithm is given for transforming
a low order energy function into a (possibly) higher
one by elimination of some or all of the hidden vari-
ables. (Formal proofs are given in (Pinkas 90)). This
algorithms allow us to trade the computational power

of Sigma-Fi units for additional simple units, and vice
versa.

Note that we could have used a stronger definition for
equivalence of energy functions. The functions that
are generated by the transformations not only have
the same set of minima, but have the same energy as
the original function (up to a constant difference) for
all instantiations of the visible variables

6.1 Converting a high order energy function
into a lower order function

Every k order energy function E can be transformed
into an equivalent (k — 1) order energy function by
adding extra hidden variables. Transformation is done
by replacing each of the k-order terms in E with a sum
of (k-1) order expressions:

e Any k-order term (o []5., z:), with a NEGATIVE
coefficient &, can be replaced by a quadratic terin
of the form : 21—1 2aX;T~(2k—1)aT generating
an equivalent energy function with one additional
hidden variable, T

o Any k-order term (a5, 2:), with a POSITIVE
coefficient «, can be replaced by a term of order
(k—1) of the form: a[i) 2i— (Tho) 2aX:T)
2aX:T + (2k — 3)aT, generating an equwa—
lent energy function with one additional hidden
variable?.

EXAMPLE 6.2 When term is negative:
~3XYZU = -6XT - 6YT - 62T —6UT + 21T.

EXAMPLE 6.3 When term is positive:

XYZ2U = XYZ-2XT-2YT-2ZT+2UT +5T
o XY = 2XT' -2YT' +2ZT' + 3T’
—2XT ~2YT -2ZT +2UT + 57T

EXAMPLE 6.4 The cubic energy function E =
~NSWH+2RN-WN+W1+S~R~N is equivalent to
—2NT-2ST-2WT+5T+2RN-WN+W+S-R-N
by using additional hidden variable T. The correspond-
ing networks appear in figure 2 and figure 1.

6.2 Eliminating hidden variables

The symmetric transformation, from low order into
high order energy, is also possible: Every k- order en-
ergy function with at least one lndden variable T', can
be transformed into an equivalent (possibly} higher or-
der energy function that does not include T, using the
following method:

2We conjecture that the asymmetry between the pos-
itive and the negative transformations is a result of the
asymmetric encoding we used for true (1) and false (0).

Energy Minimization and the Satisfiability of P ropositional Logic

Assume T }s a hidden variable to be eliminated.

Let o;TT]L, Xj; be alj + 1-order term that shares
an arc withI_T. ‘We combine all these terms to form:
(2,':1 o; [TiL, X;)T.

We replace this term with a new term that is generated
using the following procedure:

Consider all instantiations = (z;,,...,z;), of the
variables Xj, ,...Xj such that

Bs = 2;7:, o; [T, =, < 0, where S is an assignment
for the ! variables z;,,...,2; (called negative assign-
ment).

If we clamp the visible variables using a negative as-
signment S, T will settle on the value one (generating
negative energy). All other instantiations will cause T
to settle on zero (generating zero energy). We will cre-
ate now a new term (without T') that will generate the
same energy (8s) for the negative assignments, and
zero energy for all other assignments.

For every instantiation (z;,,...,z;) obtained by as-
signment S, let the function L% be:
i Xi; ifS(X:;)=1
J —_ 3 i
Ls(X) = { 12 X;, iS(X;)=0
Then, generate th:e term:

l
newlerm = Z Bs H LJS(X)
S such that s < 0 =t

Replace the old term: (EL, aj H:’.‘_:l X;,)T with the
newterm. . L.

The term [];_; L5(X) is one for assignment S and
zero for all other assignments.

The new term generates the same energy as the orig-
inal term for all assignments of the visible variables
(not including T).

ExaMPLE 6.5 Let T be the hidden variable to be
eliminated, then:
AB4+TAC-TA+2TB~T = AB+T(AC—-A+2B~1)
The following assignments for (A, B,C) cause 8 to be
less then zero:
Bio0,0) = =1; By = -1

1,0,0) = —2; (1,0,? =-1
The new term equals:
—(1 - A)(1= B)(1- C) = (1 = A)(1 - B)C — 2A(1 —
B)(1-C)- A(1-B)C
=—-ABC+AB+ AC-A+B-1
Therefore: AB+ TAC ~-TA+2TB-T
~—-ABC +2AB + AC - A4 B.

Note that (1,0,0) uniquely minimizes both functions,
but the energy of the two functions is equal for all
assignments of the visible variables.

7 Describing WFFs by energy
functions

An energy function E describes a WFTF ¢ if the set
of visible satisfying models of ¢ is equal to the set of
visible solutions of the minimization of E.

Formally: E describes ¢ if (V2)(((32)(¢(2,1) = 1) <=
(GIVE(z,1)) = ming{E@)})).

ExaMPLE 7.1 ((—A) V (=B) Vv C) is described by
AB —2AT - 2BT - 2CT 45T

The minimizing set is:
{(0000,0001,0010,0011,0100,0101,1111)}

and after projection onto the visible variables ABC,
we get {(000,001,010, 011,100,101,111)} which is the
set of all the models that satisfy the WFF.

Next we show that if p(z1, ..., zn) is a satisfiable WFF
of n variables then y is described by some n-order en-
ergy function with no hidden variables (contradictions
can not be described by any energy function).

8 The penalty function

The penalty E, of a WFF ¢ is a function P, : V* —
N, that gives a penalty to every subexpression of the
WFF that is not satisfied. It looks at the conjunctive
terms in the upper level of the WFFs structure and
for every term ¢; in o1 A2 A ... , it computes the
characteristic of the negation of ¢;:

Er(zy1y...,25) =1~ Hy(z1,...,2,)
o Enpy)(z1,-- 2 %n) = Hpy (21, -+, Zn)

. E(‘PIV‘PQ)(xl! ceey zn)
= H(=p)a-p2)) (%15 - -1 n)

[] E(llepz)(zl, .- .,:L‘n)
= Ep(z1,...,Z0) + By (21, .., Zn)

* E(p1—p2)(215 -3 %n) = E((~p1)vipa) (13- -1 Zn)

A more intuitive way to look at the penalty function
is to observe that if ¢ = A[L, p; then:

m
Po=) (1-Hy)

i=1
It all terms are satisfied, Py gets the value zero, other-
wise, the function computes the number of unsatisfied
terms. The function generated may be simplified to a
sum of products form of an energy function that has
a maximum order of n.

It is easy to see that ¢ is satisfied by Z iff £, is mini-
mized by Z and the global minimum is zero. Therefore,
every satisfiable WFF ¢ has a function Eyp such that
E¢ describes 5.

The penalty function of a contradiction does not de-
scribe it and is always greater then zero. The set of

27

Pinkas

minimizing solutions is never equal to the set of satisfy-
ing models of a contradiction (the empty set). However
it is equal to the set of models that satisfy a maximal
consistent subset (of triples).

We can also notice that if ¢ is a conjunction of WFFs
each of maximum k variables, then ¢ is described by
a k-order energy function.

EXAMPLE 8.1 E4a(Bv(~C)))

= Ex + E(pv(~cy)

= (1= A)+ H-B)r0)
=(1-A)+(1-B)C=1-4+C-BC

Because a WFF in CTF is a conjunction of subexpres-
sions each containing at most three variables, it may
be described by a cubic energy function. Since every
WFF is equivalent to a WFF in CTF, we can con-
clude that every WFF is described by a cubic energy
function.

We show now that all WFFs are described by
quadratic energy functions, and that all energy func-
tions describe some WFFs.

9 Mapping from a satisfiability
problem to a minimization problem
and vice versa.

9.1 Every WFF is described by some
quadratic energy function.

The following algorithm transforms a WFF into a
quadratic energy function that describes it by adding
O(length(y)) hidden variables.

e Convert into conjunction of triples { adding
O(length)p)) hidden variables) using the method
of section 4. The variables added here reduce both
the order and the fan-out of the connectionist net-
work that we generate.

o Convert a conjunction of triples into a cubic en-
ergy function and simplify it to a sum of products
form (using the penalty function of section 8).

e Convert cubic terms into quadratic terms.
(adding O(length(y)) hidden variables) using the
construction of section 6.1.

ExaMpPLE 9.1 Converting

¢ = (((~(-A)) A B) — ((=C) — D)) to conjunction
of triples generates:

(~(=ANAB)=T1)A(((=C) — D)~T2) A(Ty — Ta).
Eliminating « and — generates:

(T, V(=A)V (=B) A(*T) V(AN B) AT V (-C)) A
(T v (~D)) A((<T3) VCV DY A ((=T1) V T2)
Generating the cubic energy function.
(1-T)AB+T(1-A)+Ti(1-B)+ (1 -T)C+(1 -
L)D+To(1-C)1-D)+ Ti(1 - T)

=-ABT1+CDT+ AB- AT, —BT1-2CT,-2DT, -
NTL+3N+C+D+T

Converting into a quadratic function.
~24AT3~-2BT3— 21\ T3+CD~2CT3—-2DT4 4+ 21Ty +
5134314+ AB— ATy ~-BTNh - 2CT2 =20 -1 I +
Sh+C+D+T

ExaMPLE 9.2 Our WFF is composed of a conjunction
of the following sub-formulas:

NAS—-W

R — (~N)

Nv (-=W)

S—N

NVR

We can compute the penalty function for each of the
sub-formulas and then add them all:

NS—-NSW +

RN +

W—-WN+

S— NS+

1-R-N+RN
=~NSW4+2RN-WN4+W+S—-R-N+1.
This cubic energy function is represented by the net-
work of figure 2. Its transformation to quadratic func-
tion generates: —2NT —~ 25T — 2WT + 5T + 2RN —
WN 4+ W45 — R~ N+ 1. This quadratic function
describes the same knowledge base and is represented
by the network of figure 1.

The algorithm features incremental updating of the
knowledge base: If we wish to add another piece of
knowledge, delete a WFF or update one, we make only
local changes to the network and we do not have to re-
compute it all over again.

ExampPLE 9.3 Toadd the WFF: N — R to the knowl-
edge base of the previous example, we need only to
compute the penalty function for this WFF and add
it to the previous energy function. In the case of
N — R we add N — NR to the previous function
and the result is: —2NT — 28T —2WT +5T + RN —
WN 4+ W 485 ~R+ 1. If we now wish to delete
R -+ (~N), we subtract RV and we get the function.
=2VNT=-2ST-2WT+5T—-WN+ W+ 5~ R+1. The
new knowledge base is represented by the network of
figure 3.

9.2 Every energy function describes some
satisfiable WFF,

To complete the proof that satisfiability problems are
equivalent to energy minimization problems, we need
to show that for any energy function E with n visible
variables and j hidden variables there exists a satisfi-
able WFEF o, such that E describes 0. We have shown
that any energy function @ with hidden variables is
equivalent to some other energy function (possibly
of higher order) with no hidden variables at all. We
show now that for any k-order energy function £ with

Energy Minimization and the Satisfiability of Propositional Logic

Figure 3: The energy function —2NT'-2ST ~2WT+
ST ~WN + W+ S — R+ 1 captures the knowledge
base after adding the WFF: N — R and deleting R —
(=N).

no hidden variables there exists a satisfiable WFF ¢
such that E describes ¢. A method for constructing ¢
is given below:

Method: Given E and n variables X = (1)1 Zn)
there are | {0,1}" |= 2" possible instantiations.
Compute E(Z) for all instantiations S(X) = z¢{0,1}"
and find minz{E(z)} = ming

Construct a boolean function:

oy _ | 1 if B(X) = ming
He(X) = { 0 otherwise

. n i .
Build 2 WFF: ¢ = VH;;(S(X’)):I(A":l L) that is
characterized by Hg.

’ i X,' if S(X, =1
Where L = { (-X;) if S(x,-g =0
¥ is a disjunction of terms. Each term is of the form.
s = (Ajz; LE) (This method proves existence of such
WFF although the algorithm is very inefficient). Note,
that it is only the minima that cause a function to de-
scribe a WFF. The exact energy surface is irrelevant
for this purpose.

EXaMpLE 9.4 E(X,Y)=-XY + 1.5X

Trying all instantiations:

E(0,0) =0; E(0,1) = 0;

E(1,0) = 1.5; E(1,1) = 0.5

The characteristic function will be:

H(0,0) =1, H(0,1) = 1; H(1,0) = 0; H(1,1) =0

The WFF that is described by E is therefore: (((=X)A
YDV ((=X)AY))

9.3 Complexity

The algorithm to convert a WFF into a network of
simple units is an efficient one and generates a network
with economical size and fan-out.

We define the size of the generated network as the
number of hidden units, and we define the fan-out of
a variable to be the number of different multi-variable
terms shared by a variable.

‘The conversion to CTF generates new variables pro-
portional to the number of connectives in the WFF.
The number of hidden variables that are generated
by the conversion of a cubic function into quadratic
function is also on the order of the number of binary
connectives. The reason for this is that a sub-formula
of 3 variables generates one cubic term that generates
in turn only one hidden unit. As a result we conclude
that the number of hidden units that are generated is
linear in the length of the original WFF.

The fan-out of all these hidden variables is bounded by
six for those generated for CTF and bounded by three
for those generated by conversion into a quadratic
function.

10 Summary, applications and
conclusions

We have shown an equivalence between the problem of
satisfiability of propositional calculus and the problem
of minimizing connectionist energy functions.

Any propositional satisfiable WFF can be described by
an order n energy function with no hidden variables,
or by a quadratic energy function with additional hid-
den variables. Any quadratic (or higher order) energy
function with some hidden variables is equivalent to a
possibly higher order energy function with no hidden
variables, and every energy function describes some
satisfiable WFF. We have presented algorithms to con-
vert a given WFF into a quadratic energy function
that produces hidden variables with fan-out bounded
by a constant. The number of hidden units that are
generated is linear in the length of the WFF. Using
this algorithm we can determine the topology and the
weights of a connectionist network that represents and
“solves” 3 a given satisfiability problem. What the en-
ergy landscape looks like, and how casy is it for the
network to escape from local minima are areas for fu-
ture rescarch.

High order, stable connectionist models with Sigma-Pi
units that minimize high order functions can be con-
structed. We have also identified procedures to trans-
form high order energy functions into quadratic energy
functions and vice versa, (by adding or eliminating hid-

3We assume that the model is capable of escaping from
local minima.

29

30

Pinkas

den variables).

As aresult, we may conclude that these Sigma-Pi units
are not needed, if we agree to add more hidden units
into the network. We can also eliminate hidden units
by adding Sigma-Pi capab. ities to some of the other
units.

As aresult of the equivalence relations defined both on
energy functions and on WFFs, we can show that the
space of connectionist energy functions is divided into
equivalence classes and so is the space of propositional
WFFs. There is a one to one mapping (bijection) be-
tween the set of equivalence classes of energy functions
and the set of classes of satisfiable WFFs. The cardi-
nality of these two sets is 22" — 1. There is also a bi-
jection between the set of non-zero boolean functions
and the set of energy classes since a non-zero boolean
function characterizes a satisfiable WFF which can be
described by a class of energy functions.

We may also conclude a limitation to the kind of prob-
lems energy minimization connectionist networks can
solve. Only those problems that can be stated as satis-
fiability problems of propositional calculus (and every
such problem) can also be stated as energy minimiza-
tion problems.

Several applications may benefit from the techniques
developed here. We'll mention briefly two of them.
associative memory and finding a maximal consistent
subset.

We can construct a network implementing any boolean
function in a size that is proportional to the size of the
boolean implementation of the function (using logi-
cal gates). Assuming ¢(zy,...,z,) is the boolean im-
plementation of the given function then applying the
methods described in this paper to the WFF: (out—y)
will produce a connectionist implementation of the
function. Clamping the variables zy, ..., z, will cause
the unit “out” to get the value of the function when
the network reaches equilibrium (assuming it can es-
cape from local minima). By clamping ouf = 1 and
supplying only a portion of the inputs, this mecha-
nism features also pattern completion and thus can be
used as an associative memory. For any set of binary
vectors we wish to store in the associative memory,
we construct the boolean implementation that outputs
one for any member of the set and zero otherwise. If
we can minimize this boolean implementation to poly-
nomial size, we can also build an associative memory
of polynomial size.

As alast example consider a set of possibly contradict-
ing logic beliefs (Derthick 87), we can construct a net-
work that will search for a maximal consistent subset
and thus be used for reasoning from a conflicting set
of beliefs. In the case where no priorities are assigned
to the beliefs, the maximal consistent subset is cho-
sen tc be a consistent subset of WFFs with maximal
cardinality. However, in the general case each of the

beliefs may be assigned a penalty (representing degree
of belief for example) and a total order of preference
between beliefs is determined. Contradicting WFFs
compete among themselves and the netwurk defeats
some of .he beliefs in favor of others. At equilibrium,
providing a global minimum was found, the network
finds a consistent subset of beliefs such that the total
penalty is minimized.

Acknowledgments

I thank William Ball, Dan Kimura, Arun Kumar, Stan
Kwasny, Ron Loui and Dave Touretzky for helpful
comments and suggestions, I thank also McDonnell
Douglas Co., Southwestern Bell Co., and Mitsubishi
Electronics America, Inc. the sponsors of the Center
for Intelligent Computing Systems.

References

D. H. Ballard “Parallel Logical Inference and Energy
Minimization” Proceedings of the 5th National confer-
ence on Artificial Intelligence Philadelphia, Pa., Au-
gust 1986, pp. 203-208

M. Derthick “A Connectionist Architecture for rep-
resenting and Reasoning about Structured Knowl-
edge” Proceedings of the Ninth Cognilive Science So-
ciety,1987, Seattle, WA

M.R Garey, D.S Johnson “Compulers and Intraclabil-
ity - A Guide 1o the theory of NP- Completeness”
(W.H. Freeman and Company San Francisco) 1979

G.E Hinton and T.J. Sejnowski “Learning and Re-
learning in Boltzman Machines” in J. L. McClel-
land, D. E. Rumelhart “Parallel Distributed Process-
ing:Ezplorations in the Microstructure of Cognition™
Vol I pp. 282- 317 MIT Press 1986

J.J. Hopfield "Neural networks and physical system
with emergent collective computational abilities,” Pro-
ceedings of the National Academy of Sciences USA,
1982,79,2554-2558.

J.J. Hopfield “Neurons with graded response have col-
lective computational properties like those of two-state
neurons”. Proceedings of the National Academy of Sc1-
ences USA, 1984,Vol 81, pp. 3088-3092.

J.J. Hopfield, D.W. Tank “Neural Computation of De-
cisions in Optimization Problems” Biological Cyber-
netics, Vol 52, pp. 144-152.

G. Pinkas, “Energy Minimization and the Satisfiability
of Propositional Caiculus ™ Technical Report. WU CS-
90-03, Department of Compuler Science, Washinglon
University 1990

D E. Rumelhart,G.E Hinton and J. L. McClelland “A
General Framework for Parallel Distributed Process-
ing” in J. L. McClelland, D. E. Rumelhart “Parallel

Energy Minimization and the Satisfiability of Propositional Logic 31

Distributed Processing:Ezplorations in the Microsiruc-
ture of Cognition” Vol I pp. 282 - 317 MIT Press
1986

D.S. Touretzky, G.E. Hinton “A distributed con-
nectionist production system” Cognilive Science
12(3):423-466.

T.J. Sejnowski “High-order Boltzman Machines”,
Neural Networks for Computing, Proceedings of the
Americen Inslitute of Physics 151, Snowbird (Utah)
pp 3984.

Part 1l

Reinforcement Ledrning

On the Computational Economics of Reinforcement Learning

Andrew G. Barto
Dept. of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003

Abstract

Following terminology used in adaptive con-
trol, we distinguish between indirect learning
methods, which learn explicit models of the
dynamic structure of the system to be con-
trolled, and direct learning methods, which
do not. We compare an existing indirect
method, which uses a conventional dynamic
programming algorithm, with a closely re-
lated direct reinforcement learning method
by applying both methods to an infinite hori-
zon Markov decision problem with unknown
state-transition probabilities. The simula-
tious show that although the direct method
requires much less space and dramatically
less computation per control action, its learn-
ing ability in this task is superior to, or
compares favorably with, that of the more
complex indirect method. Although these
results do not address how the methods’
performances compare as problems become
more difficult, they suggest that given a fixed
amount of computational power available per
control action, it may be better to use a
direct reinforcement learning method aug-
mented with indirect techniques than to de-
vote all available resources to a computation-
ally costly indirect method. Comprehensive
answers to the questions raised by this study
depend on many factors making up the eco-
nomic context of the computation.

1 INTRODUCTION

In its simplest form, reinforcement learning is based
on the commonsense idea that if an action is fullowed
by a satisfactory state of affairs, or an improvement
in the state of affairs (as determined in some clearly
defined way), then the tendency to produce that ac-
tion is strengthened, ie., reinforced. This idea plays
a fundamental role in theories of animal learning and

Satinder Pal Singh
Dept. of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003

is elaborated mathematically in the theory of learning
automata (Narendra and Thathachar, 1989). Embed-
ding this idea within a framework for associative learn-
ing includes a role for stimulus patterns in eliciting ac-
tions (Barto, Sutton, and Brouwer, 1981; Barto and
Anandan, 1985; Klopf, 1982). Extending reinforce-
ment learning further, it is possible to specify the idea
of being “followed by a satisfactory state of affairs” in
terms of the long-term consequences of an action, or
of a policy for performing actions, instead of simply
short-term consequences. By combining methods for
adjusting action-selection rules with methods for es-
timating the long-term consequences of actions, rein-
forcement learning methods can be devised that are
applicable to control problems involving temporally
extended behavior (e.g., Anderson, 1987; Barto, Sut-
ton, and Anderson, 1983; Barto, Sutton and Watkins,
1990, to appear; Hampson, 1989; Jordan and Jacobs,
1990; Sutton, 1984; Watkins, 1989; Werbos, 1987;
Witten, 1977a, b).

Although control architectures based on reinforce-
ment learning can be quite complex, including com-
ponents permitting off-line, look-ahead planning (Sut-
ton, 1990), reinforcement learning is usually regarded
as a very simple and direct method for adjusting be-
havior. The utility of simple, direct learning methods
as compared to the utility of more complex methods
depends upon the particular algorithms in question,
specific characteristics of the ensemble of tasks of in-
terest, as well as a host of other factors influencing the
outceme of possible cost-benefit analyses. Are the per-
formance improvements expected of a “sophisticated”
learning method going to be worth its additional com-
putational cost? What would happen if available com-
putational power were used to implement many differ-
ent simple learning methods instead of a few complex
methods? Do conditions, in fact, favor learning at all
as opposed to a hand-crafted solution? Questions such
as these, which we regard es involving the computa-
tional economics of learning, cannot be answered in-
dependently of the relevant context, but they address
factors that play major roles in shaping biological sys-
tems and that should play major roles in the design of

35

Barto and Singh

artificial systems.

The simulations described in this paper were moti-
vated by a simple, but nevertheless unanswered, ques-
tion about the relative efficiency of two approaches to
learning how to solve a particular type of stochastic
control problem. Following terminology used in adap-
tive control (e.g., Goodwin and Sin, 1984), we distin-
guish between indirect learning methods, which learn
explicit models of the dynamic structure of the system
to be controlled, and direct learning methods, which
do not.! Indirect methods estimate unknown param-
eters describing the system to be controlled and de-
fine a control rule in terms of these estimates; that is,
they employ a system identification procedure to form
a model of the system together with a control design
procedure that is executed on-line to compute the cur-
rent control rule from the current system model.2 The
need for the repeated execution of this design proce-
dure is what justifies the term indirect. Direct meth-
ods, on the other hand, estimate parameters that di-
rectly specify the control rule instead of the system to
be controlled. Although we knew that direct methods
based on reinforcement learning require less computa-
tion for each control action than indirect methods, we
did not know, even for small artificial cuntrol prob-
lems, how the performance of such a direct method
would compare with that of a more conventional indi-
rect method in terms of the number of control actions
required for learning.

We compared two learning methods that are as similar
as possible except that one is indirect and the other is
a direct method utilizing reinforcement learning. We
applied them to an infinite horizon Markov decision
problem with unknown state-transition probabilities.
The simulation results show that although the direct
method requires much less space and dramatically less
computation per control action, its learning ability in
this task is superior to, or compares favorably with,
that of the more complex indirect method. Because
our simulation results comparing these methods were
obtained on a single small example of a Markov de-
cision problem, they do not address how the meth-
ods’ performances compare as problems become larger
and/or more difficult. However these results demon-
strate that direct reinforcement learning methods are
not necessarily less capable than much more complex
indirect methods, and they raise questions, which we
discuss below, about the computational economics of
learning,

}This distinction parallels that between parametric and
non-parametric approaches to pattern classification (e.g.,
Duda and Hart, 1973). Watkins (1989) made a similar dis-
tinction between model-based and primitive learning meth-
ods, terminology we adopted in Barto and Singh (1990).

2A control design procedure is any method for deter-
mining a control rule based on a system model and perfor-
mance specifications.

The indirect method we implemented is that Sato,
Abe, and Takeda (1988), which performs system iden-
tification and uses dynamic programming (DP) to es-
timate optimal actions from the system model. The
direct method we implemented replaces the DP com-
ponent of the Sato et al. method with Watkins’ Q-
Learning algorithm for incrementally approximating
the results of DP (Watkins, 1989). We call the re-
sulting direct reinforcement learning algorithm the Ex-
ploratory Q-Learning, or EQ, algorithm. We selected
the method of Sato et al. for this study because its
action-selection component is readily adaptable to di-
rect methods. However, in fairness, we note that the
contribution of Sato et al. (1988) is a convergence the-
orem for their algorithm rather than a demonstration
of its efficiency, and here we do not prove a compara-
ble convergence result for the EQ algorithm (although
such a result can be proved, as we will report in a
forthcoming article).

In this paper we do not address all of the issues that
are critical in more elaborate applications of the learn-
ing methods that we discuss. We assume that the
states of the Markov chain underlying the decision
problem are completely and unambiguously observ-
able, thereby eliminating from consideration the im-
portant issues for control raised by incomplete state
information. We also assume that representation and
storage of information Is accomplished in simple look-
up table form. More general representation and stor-
age schemes involve the kinds of parameterized models
and distributed representations that may make arti-
ficial neural networks useful for these types of con-
trol problems. We assume the reader can extrapolate
from what we present here to relate our observations
about the economic context of reinforcement learning
to methods implemented by artificial neural networks.

2 INDIRECT AND DIRECT
ADAPTIVE CONTROL

For some approaches to adaptive control, the distinc-
tion between indirect and direct methods amounts to
little more than the difference between expressing the
control rule in terms of the parameters of the system
model on-line during learning (the indirect case) or off-
line before the start of learning (the direct case). If the
computation required by the control design procedure
is relatively simple, as it is in many adaptive control
methods, the distinction between direct and indirect
methods has minor impact on computational cost.

Here, however, we are interested in control tasks in
which this computation can be extremely costly. This
occurs when the control objective is not to make the
controlled system closely follow a specified reference
trajectory- the kind of task which is most widely stud-
ied in adaptive control but to control the system to
maximize a measure of long-term performance not in-

On the Computational Economics of Reinforcement Learning

volving a prespecified trajectory. For nonlinear sys-
tems, solving these optimal control problems requires
extensive computation even if the system to be con-
trolled is completely known. In the general case, a
search has to be conducted in the space of all possible
t-ajectories, which grows explosively as a function of
the number of control actions, system states, and the
time-horizon of the task. For the problems in which
we are interested, here illustrated by Markov decision
problems, this complexity can be dramatically reduced
by applying DP methods, but the computational com-
plexity (both space and time complexity) stili remains
a critical limitation.

If the system to be controlled is not completely known
and the control design procedure is costly for all mem-
bers of the class of system models under considera-
tion, then the computational requirements become es-
pecially severe. One strategy for such problems is to
abandon the goal of performing learning on-line while
the system is being controlled. A separate system iden-
tification phase can be completed to a satisfactory de-
gree of accuracy, and then the control design procedure
can be executed once based on the resulting system
model. This is essentially the traditional non-adaptive
approach in which system modeling and control are
considered as separate tasks.

For learning on-line during control, an indirect method
requires the repeated application of the costly design
procedure (such as DP) during learning as the sys-
tem model is updated. In such cases, therefore, direct
methods can have significant advantages by eliminat-
ing the need for the repeated application of the de-
sign procedure. Unfortunately, for the optimal control
problems in which we are interested, in the absence of
restrictive assumptions, there is no known way to pre-
compute an optimal control rule in terms of a system
model to form an easy-to-evaluate function of param-
eter estimates. Stated differently, except in special
cases, there is no known analytical way to circumvent
the required search in the space of trajectories.

It is possible, however, to reorganize this search by dis-
tributing it differently over system states, control ac-
tions, and time. This is the basis of direct approaches
to adaptive optimal control, such as the EQ algorithm
described below, which use incremental DP methods.
The intuition underlying these approaches is that it
is not worth the computational effort to perform ex-
tensive long-term planning based on highly uncertain
information.

3 MARKOV DECISION
PROBLEMS

A Markov decision problem is defined in terms of a
discrete-time stochastic dynamical system with finite
state set {1,..., N}. At each time step a controller ob-

serves the system'’s state and selects an action from the
action set A = {1,..., K’} (where we simplify slightly
by not letting this set depend on the observed state).
If i is the observed state and action k is selected, the
state at the next time step will be j with probability
pf]. We further assume that under action k, a tran-

sition from state i to state j produces a payoff r¥;,
where |rf;] < oo for each i, j, and k.3 The controller
can implement a state feedback control law, called a
policy, to provide a control action at each time step as
a function of the observed state. A stationary policy,
denoted U = (ui,...,un) € AV, specifies that the
controller performs action u; when state 7 is observed.
The stochastic system together with a stationary pol-
icy U define a stationary finite state Markov chain with
probability p}; of making a transition from state i to
state j.

For any stationary policy U and state i, let vY denote
the expected infinile-horizon discounted return, which
we simply call the return, for state i given policy U.
Letting r(t) denote the payoff at time ¢, this is defined
as follows:

W= Ey Creo 7 r()li(0) = 4], (1)

where 7(0) is the system’s initial state, v,0 <y < 1is
a factor used to discount future payoffs, and Ey is the
expectation assuming the controller always uses policy
U. It is usual to call vY the value of i under policy
U. The function assigning values to states is called the
value funclion corresponding to the given policy. The
objective of the type of Markov decision problem con-
sidered here is to find a policy that maximizes the valve
of each state i defined by (1). A policy that achieves
this objective is an optimal policy which, although not
always unique, is denoted U* = (u},...,u}y). It can
be shown that for the formulation given here, all opti-
mal policies are stationary (e.g., Bertsekas, 1987).

Given a complete and accurate model of a Markov de-
ciston problem in the form of knowledge of the transi-
tion probabilities, pf-‘j, and the payoff array, r}‘j, for
all states ¢ and j and actions k, it is possible to
solve the decision problem by applying one of vari-
ous DP methods as described, for example, by Bert-
sekas (1987). Indeed, in the absence of assumptions
other than those described above about the structure
of the decision problem, DP methods are the only ex-
act methods applicable short of exhaustive searches
through the space of all policies. The method of Sato
et al. makes use of the DP algorithm called policy it-
eration, which computes a sequence of improving poli-
cies. At each iteration, the value function for the cur-
rent policy must be computed either by a successive
approximation method or by inverting an N x N ma-

*In more general formulations, each payoff r¥, is gener-
ated by a random process that depends on 1, 7, and k, but
we follow Sato et al. (1988) and restnict attention to the
case in which the payofl process is determimstic.

37

38

Barto and Singh

trix. The process converges to an optimal policy after
a finite number of iterations.

4 INDIRECT AND DIRECT
LEARNING FOR MARKOV
DECISION PROBLEMS

When a complete model of the decision problem is un-
available, it is necessary to learn about the problem
while interacting with the system defining it. Indirect
learning methods are the most widely studied. They
rely on state-transition models formed by estimating
the state-transition probabilities for each control ac-
tion. These estimates can be formed while the con-
troller is interacting with the system by keeping track
of the frequencies with which the various state tran-
sitions occur for the various control actions. Indirect
methods also require estimating the payoffs r¥, for
each combination of current state, i, next state, j, and
action, k.4 Indirect methods are based on the certainty
equivalence principle of computing and using policies
that would be optimal if the current transition proba-
bility estimates were correct (Bertsekas, 1987). Most
of the methods for the adaptive control of Markov pro-
cesses described in the engineering literature are indi-
rect (e.g., Borkar and Varaiya, 1979; Kumar and Lin,
1982, Mandl, 1974, Riordon, 1969, Sato-Abe-Takeda,
1982, 1985, 1988).

Although reinforcement learning methods can utilize
models in a variety of ways, most such methods are
classified as direct because they do not use state-
transition models. In a direct learning method, there
is no possibility for performing any computation that
explicitly requires “thinking about” state transitions
without actually causing the controlled system to ex-
ecute them. Ruled out, therefore, are any methods
using conventional DP or heuristic search algorithms.
Most examples of direct methods for learning how to
solve Markov decision problems make use of stochas-
tic learning automata (e.g., Lakshmivarahan, 1981,
Narendra and Thathachar, 1989; Wheeler and Naren-
dra ,1986; Witten, 1977a, b).

Although direct reinforcement learning methods do
not use state-transition models, they can use value
function models, which we call value models in what
follows. The simplest methods use the value model’s
output to evaluate and reinforce control actions as they
are performed. The pole-balancing system of Barto,
Sutton, and Anderson (1983) illustrates this approach.
After each control action, the value model is updated
based on the immediate payoff and the value estimate
of the next state using an “adaptive critic method.”
This class of value-estimation methods, developed by
Sutton (1984, 1988), who also calls them “temporal

*More generally, if the payoff process is stochastic, the
expected payoff values must be estimated.

difference methods,” are related to methods proposed
earlier by Klopf (1972), Witten (1977a, b), and Wer-
bos (1977). Werbos has discussed these methods in
terms of DP and calls them “heuristic dynamic pro-
gramming”’ methods. Similar connections to DP were
recently described by Watkins (1989), who uses the
term “incremental dynamic programming.” This gen-
eral class of methods is discussed in terms of DP by
Barto, Sutton, and Watkins (1990, to appear) and
Werbos (1987, 1988, 1989), who also provide references
to related research by others.

Another way of using a value model is illustrated by
fatkins' (1989) Q-Learning method, described below,
which forms a different kind of value model to pro-
vide a return estimate for each state/action pair. The
output of this value model for a state/action pair is
an estimate of the expected return assuming that the
given action is performed for the given state, and that
an optimal policy is used thereafter. Control deci-
sions can be made according to how control actions
are ranked by this value model given the current state.
This method is related to the “action-dependent adap-
tive critic” mentioned by Werbos (1989) and to the
classifier systems described by Holiand (1986).

When payoff values and control actions are continu-
ous quantities, a value model can be constructed in
a form that permits the computation of the gradient
of the estimated value with respect to control vari-
ables. The policy can then be adjusted via gradient
ascent. Using an artificial neural network to repre-
sent the value model makes this approach attractive
because the value model’s gradient can be computed
efficiently by error back-propagation. This approach
was discussed by Werbos (1977) in relation to the dif-
ferential dynamic programming method of Jacobson
and Mayne (1970), and Jordan and Jacobs (1990) il-
lustrated it using a version of the pole-balancing task
with continuous control actions.

Reinforcement learning methods have also been stud-
ied that use both state-transition and value models
(e.g., El-Fattah, 1981; Sutton, 1990). Werbos (1987,
1988, 1989) discusses gradient methods that make use
of system models.

5 AN INDIRECT ALGORITHM

We describe the algorithm proposed by Sato, Abe, and
Takeda (1988) as an example of an indirect method
for learning to solve Markov decision problems with
unknown transition probabilities. This algorithm is
an extension of previous research by the same authors
(Sato, Abe, and Takeda, 1982, 1985). In Section 6,
we combine a component of this algorithm with Q-
Learning to produce a comparable direct method.

The method of Sato et al. explicitly estimates the un-
known state-transition probabilities by keeping counts

On the Computational Economics of Reinforcement Learning

of state transmons observed while controlling the sys-
tem. Let nf (t) be the number of times action k was
taken on a transmon from state ¢ to state j before
time . Then nf(t) = 30; nf;(t) is the number of times

action k was taken in state i, and n;(t) = 3, n¥(t) is
the number of times state ¢ occurred. The estimates at
time ¢ of the unknown transition probabilities, which
constltute the state-transition model at time £, are
p,J (t) = nF (t)/n"(t) Sato et al. (1988) show that
if all state-transition probabilities are positive, then in
the limit these estimates converge, almost surely, to
the actual transition probabilities. They assume that
the payoff array is known.

At each time ¢, an estimated optimal policy, U*(¢),
is computed using the policy iteration method of DP
based on the current state-transition model and the
payoff array. The control action specified by this policy
for the current state 1, 47, is used to bias the control
decision in favor of the estimated optimal action in a
manner described below. Because the state-transition
model only changes by a small amount at each time
step, the policy iteration method converges after few
iterations if it starts with the estimated optimal policy
computed on the previous time step.

An explicit mechanism is used to cause sufficient ex-
ploratory behavior for the system identification pro-
cess to converge to the correct state-transition model.
This mechanism works by sometimes forcing the con-
troller to take an action that has not been taken for
a long time instead of the action currently estimated
to be optimal. This explicit tradeoff between estima-
tion and control is implemented i in the following way.
At each time step ¢, a quantity, cF(t), is maintained
for each state 7 and action k to reﬂect the number of
times action k has not been performed in state 7 since
t = 0. These quantities are computed iteratively by
letting c¥(0) = 0 for all i and k and using the follow-
ing update rule at each time step:

ck(t) +O(ni(t + 1) — nk(t + 1))

cf (1)

where u(t) is the action performed at time t. © is a
positive function that is constant or satisfies the con-
ditions

u(t)

otherwise,

nlirrgo ©(n)=0, and i O(n) = co. (2)
n=1

The values c¥(t) are used to determine the controller’s
action at time { as follows. If 7 is the state at time ¢ and
; is the action estimated (via policy iteration) to be
optimal for state 7, then the action actually performed
by the controller is the action k which maximizes

cEW)/nk(t)+a fk=14;

k(t)/"%(t) otherwise, @)

where o is a positive constant. The fractions in (3)
cause the controller to sometimes prefer over 4 an
action that has not been been performed for a long
time.

Sato et al. (1988) show that if © satisfies the condi-
tions given by (2), then in the limit all actions are
performed infinitely often for each state, as needed
for convergence of the state-transition model, and that
the policy converges to an optimal policy. Specifically,
they define the relative frequency coefficient to be

FO = At @)

which gives the average number of optimal decisions
made before time t. Sato et al. (1988) prove that if
all transition probabilities are positive and ©(n) = Op
for all n, then

llm lim f*(t) =1,

ot almost surely,
g0 t=r00

whereas if ©(n) satisfies (2), then
lim £1@®) =1,

almost surely.

6 Q-LEARNING

Q-Learning is a method proposed by Watkins (1989)
that can form the basis of a variety of direct reinforce-
ment learning methods. It is an asynchronous Monte
Carlo form of DP that does not require knowledge of
the state-transition probabilities or the payoff array.
Q-Learning estimates what Watkins calls state-action
values: the state-action value of state 7 and action
k, denoted Q;x, is the expected infinite-horizon dis-
counted return if action k is performed in initial state
i and an optimal policy is followed thereafter. An op-
timal action for state i is therefore any action k that
maximizes @;x.

Each time the controller takes an action, say action k&
from state i at time ¢, the current state-action value
estimate for 7 and k, denoted Qx(t), is updated as
follows:

Qir(t +1) = (1 - B)Qux(t) + Belr; +7 max Qiu(®)), (5)
where j is the actual next state, ¥ is the discount
factor, and {B:} is a sequence of step-size parame-
ters. The state-action value estimates for states other
than i and actions other than k remain unchanged.
Watkins (1989) shows that these estimates converge
to the true state-action values if each action is even-
tually performed infinitely often from each state and

the sequence {3} converges to zero in an appropriate
manner.

Given estimated state-action values Q;(t), the policy
that is optimal with respect to these estimates (i.e., a

|

39

40 Barto and Singh

kind of certainty equivalence policy) is the policy that
selects for each state 7 the action

o = arg max Qir(2), (6)
where ties among actions are resolved in some arbi-
trary way. Table 1: Transition Probabilities
If the estimation error of the state-action values is zero,
then the policy specifying] for each state i as defined =01 | pLa=02 |pls=02]p,=02]ps=03
by (6) is an optimal policy, but Q-Learning does not P =02 | ph=02 | pf =02 | p?, =02 | pls=02
require this policy to be followed during learning. For P =01 | ph=01]ph=01]05=03]pl=04
performing Q-Learning, the policy actually followed Pl =01 | ply=01|pla=02 | pl, =0.3 | pis =03
by the controller is not important except that it must P2, =019 =01|p%h=06|p% =01]pi=01
allow sufficient exploration to permit convergence of P =01 | ph=05]|p3=02|pl =01]p3=01
the state-action value estimates. However, for the con- ph=01]|ph=04]pls=02|p=02]ph=01
troller to improve its performance while performing Q- p5, =03] p2 =02 | p3 =02 | p3, =02 | p3s =01
Learning, it must bias its policy toward the estimated P35 =03 p3 =02 | p33=01{p3 =01 p3=03
optimal actions. Because this must be accomplished ph =02 |pl,=05|pls=01]pi =01]|pis=01
while permitting sufficient exploration, the issues that P2, =03 p2=01]pls=01]|p%=04]pi=01
arise are identical to those considered by Sato et al. p3 =02 pd=03|p}s=03|p}=011pls=01
(1988), and it is possible to combine Q-Learning with ph=02|ph=02]pls=02]|p) =02 pis=02
their method for determining control choices to pro- pi, =02 | p2, =03 | pfa=02 | p%, =0.1 | p2s =02
duce a new direct reinforcement learning algorithm. ph=01]ph=04]|p3h=02]pd=01]pd=02

This algorithm, which we call the Exploratory Q-
Learning, or EQ, algorithm, combines the exploration
strategy of Sato et al. with Q-Learning. Instead of
using policy interation at each step to estimate the
current optimal action, the EQ algorithm uses the ac-
tion, 4}, computed from the current state-action value
estimates according to (6). This action is then used in
(3) to determine the control decision, where c¥(t) and
n¥(t) are computed exactly as in the method of Sato et
al. Using Q-Learning instead of policy interation leads
to great savings in both the space and time complexity
of each control step (detailed below). Although it is
possible to reduce the space complexity further by re- Table 2: Payofts
placing the exploration method of Sato et al. with one

having less demanding space requirements, we retain

: e . - i =1 Tio=~2 | ria=—4 | rjy =-1
their method to facilitate comparison of the indirect = N 12~ 7 13~ 2 - 8
and direct aspects of the algorithms. :%: _ _ 3 :%: _ ; :%; o 1 :%: o 0

=7 | ra=—-4]ri=1 =2
7 SIMULATION RESULTS h==5|rh==2|rh=1 |r}=-2

=5 te==1|m=-3|=-7

. . . 1 1 = =

Sato et al. (1988) present simulation results for their =3 | rp=1 ré;, =2 'él =4
method applied to a simple five state, three action, ™5 = T8 = 0 73 = -1 ™= -3
Markov decision probiem. The arrays of transition m==6|rp=1 |rp=-2]ry=4
probabilities and payoffs are reproduced here in Ta- =5 |rh=-4|rl=3 |r=1
bles 1 and 2. Recognizing that this problem is too 3 =3 i, =2 hh=—-1|r==3
small to allow strong conclusions to be drawn, and =4 |rh=1 |[r=-6]|r=6
that it was used by Sato et al. merely to illustrate their rh = h=6 |rh=2 | =-1
convergence result, we compared the performances of h=-5rh=1 thh==3 |1 =4
the Sato et al. and EQ methods on this problem to ob- o ==3|rh=5 [r=2 | =-1

tain a preliminary indication of the relative efficiency
of directly comparable indirect and direct and learning
methods.

Figure 1 shows the evolution of the relative frequency
coefficient, f*(t), defined by (4), as a function of the
number control actions for both learning methods and

rolative fraquency coofficient

relative fraquency coelficient

On the Computational Economics of Reinforcement Learning

g
K3
06}~ === &
.- S
’
06 9
! S
D
[°d
041~ £ 04~
H
-_— EQ 4 —_— EQ
b= o =
02 ~ == Satoetal] 02 ~ =~ = Saloelal
0.0 | 1 0.0 ! I]
0 3000 6000 $000 0 3000 €000 9000
A number of control actions B number of control actions
10 x 10~
2
== g
. .- £ o
08 /- S 0.8
ld 4
06 T o6
4 ©
&
0.4 - 2 04
2
—_— EQ 4 — EQ
021" L~ Sawetal % 0215 .. Ssatoetal
0.0 1 v 00 v 4 |
0 3000 6000 9000 [3000 6000 9000
C number of control actions D number of control actions

Figure 1: Graphs of the relative frequency coefficient,
f*(%), as a function of the number of control actions
performed for the algorithm of Sato et al. (dashed line)
and the EQ algorithm (solid line) for four choices for
©(n). Each graph is the average of five simulation ex-
periments made with different random number seeds.
For all graphs, = 1.0, § = 0.05, and v = 0.8.
Panel A: ©(n) = 0.1, Panel B: ©(n) = 0.05, Panel
C: ©(n) = 1/n, Panel D: ©(n) = 1/ /7.

for the four choices of the function © (indicated in
the figure caption) used by Sato et al. (1988). Each
graph is the average of five simulation experiments
made with different random number seeds. In all cases,
the action-selection strategies of the two methods were
parameterized identically, so that the only difference
between the methods was the manner in which the es-
timated optimal action, @, was computed at each time
step The sequence {f,} for the Q-Learning algorithm
was held constant at 0.05 throughout the simulations,
a value not explicitly optimized for this problem.

With the exception of the graphs in Panel D, the
graphs in Fig. 1 show that, in this learming task with
the indicated parameter values, the EQ algorithm
achieves a higher level of performance after any given
number of control actions than does the algorithm of
Sato et al. Panel D shows somewhat better perfor-
mance for the method of Sato et al. Note that the EQ
algorithm achieves this performance level using only
the actual payoff at each time step instead of krowl-
edge of the entire payoff array required by thc .lgo-
rithm of Sato et al.

Not shown in the figure is the relative amount of com-

putation per control action for the two learning meth-
ods. Because the method of Sato et al. performs pol-
icy iteration after taking each action, whereas the EQ
method performs a single Q-Learning step, the EQ
method requires much less computation per step. Al-
though policy interation can be approximated without
explicit matrix inversion at each iteration (e.g., Rior-
don, 1969), we assume that each application of policy
iteration requires at least one matrix inversion. As-
suming that any practical matrix inversion algorithm
requires O(N3) operations for an N x N matrix, the
time taken by policy iteration is O(N3+ N2K), where
N is the number of states and K is the number of ac-
tions. The time required for a Q-Learning step (i.e.,
to apply (5))is just O(K). Hence, the savings for each
control action using the EQ method is dramatic. For
example, for each action performed in the test prob-
lem, the Sato et al. method requires a minimum of
about 200 basic computational steps, whereas the EQ
method requires essentially 3, the number of actions
(not counting the few computations required by each
method to implement their common action-selection
process).

Additionally, the EQ method is more space efficient
than the method of Sato et al.: The latter method
requires O(K N?) storage locations because it has to
store the state-transition model and the payoff array,
whereas Q-Learning requires O(K N) storage locations
for the state-action value estimates. In fact, most of
the space used by the EQ method is used to imple-
ment the action-selection process it shares with the
method of Sato et al. Preliminary simulations using Q-
Learning with less complex action-selection processes
have produced performance better than that of the EQ
method on this problem.

8 DISCUSSION

We were initially surprised by the results shown in Fig-
ure 1. Even for the small test problem, we expected the
simplicity of the EQ algorithm on a per-control-action
basis to extract a higher price in terms of the number
of control actions required for achieving a given level
of performance. Ignoring the per-control-action cost,
how can any method perform better than one that per-
forms complete DP at each control step? The answer
lies in the consequences that each learning method has
for the exploratory behavior of the controller. Both
algorithms use the same mechanism for selecting ac-
tions on the basis of the current estimate for the op-
timal action (4]), but differences in these estimates
imply the selection of different actions. Because each
Q-Learning step depends on a very small sample from
a random process, the behavior produced by the EQ
algorithm i3 more variable than that produced by the
algorithm of Sato et al. in the initial stages of learning.
This variability scems to produce more effective explo-
ration for the test problem in question, consistent with

41

42

Barto and Singh

Witten’s (1977b) observations on exploration in dis-
crete deterministic environments. Under conditions of
high uncertainty, therefrre, it might be better to avoid
complex long-term planning not only to save fruitless
computational effort, but also to foster more effective
exploratory behavior.

Clearly, as control problems become more difficult due
to increases in the number of states and control ac-
tions, and increases in “depth” (i.e., increases in the
degree to which the long-term consequences of control
decisions influence performance), one would expect in-
creases in the utility of performing conventional DP
based on a state-transition model. But because the
cemputational cost of this approach increases rapidly
as problems become larger and/or deeper, the straight-
forward extension of such an indirect method to more
difficult problems is not necessarily the best approach.
As problems become more difficult, the effectiveness
of various methods, and combinations of methods, will
depend on details of the problems and the conditions
under which they must be solved, i.e, on a wide set
of issues making up the economic context of the com-
putation. For example, in applying the EQ algorithm
and the algorithm of Sato et al. to several problems
larger than the test problem described here (problems
with 7 and 8 states), sometimes one algorithm and
then the other would perform better. We could dis-
cern no clear relationship between the task and which
algorithm would reach a higher level of performance
after a given number of control actions, except that
in all cases the EQ algorithm required much less over-
all computation due to the small number of computa-
tional steps it required per control action.

Experience does indicate, however, that neither the in-
direct nor the direct methods described in this paper
efficiently scale up to large nonlinear problems with-
out additional mechanisms. It seems clear that many
types of models must be employed in a variety of differ-
ent ways to achieve effective learning performance on
complex tasks. Hence, we emphatically do not inter-
pret the results reported here as suggesting that state-
transition models should be replaced by value mod-
els. These results do raise questions about the most
commonly studied methods for using state-transition
models in learning to solve Markov decision problems,
but when scaling issues are considered, they suggest
that combinations of direct and indirect methods may
be most useful. Given a fixed amount of computa-
tional power available per control action, it may be
better to use a direct reinforcement learning method
augmenled with indirect techniques than to devote all
available resources to a computationally costly indirect
method. One way of combining direct and indirect
methods that retains many of the advantages of each
approach is illustrated by Sutton’s DYNA architecture
(Sutton, 1990).

9 CONCLUSION

The simulation results described in this paper show
that although the direct EQ algorithm requires less
space and much less computation per control action
than the indirect method of Sato et al., its learn-
ing ability when applied to a test problem is supe-
rior to, or compares favorably with, that of the more
complex indirect method. Using a certainty equiva-
lence approach, indirect methods for learning to solve
Markov decision problems perform costly “pseudo-
optimization” on the basis of uncertain information.
Direct reinforcement learning methods, on the other
hand, keep closer touch to reality by directly using ex-
perience with the system itself instead of with a system
model.

However, because the comparative study presented in
this paper involves only a single very small Markov de-
cision problem and a single pair of learning algorithms,
the results merely provide one data point in the study
of the relative advantages of direct and indirect learn-
ing methods. Although we know how the relative num-
ber of computations per control action increases with
increasing problem size, we do not know what hap-
pens to the relative performance of these methods as
the task size increases. The utility of performing con-
ventional DP based on a state-transition model surely
increases with increasing problem size and difficulty,
but is it worth the greatly increasing computational
cost?

A comprehensive answer to this question depends on
many factors making up the economic context of the
computation, but our results suggest that it can be
advantageous to distribute the required learning and
planning processes over system states, control actions,
and time in ways differing from that of conventional
indirect learning methods. The theory of reinforce-
ment learning using incremental dynamic program-
ming methods needs to be extended with these issues
in mind.

Acknowledgements

This paper is based on material which appeared in
Barto and Singh (1990). This research was supported
by the Air Force Office of Scientific Research, Bolling
AFB, under Grant AFOSR-89-0526, and by the Na-
tional Science Foundation under Grant ECS-8912623.

References

C. W. Anderson. Strategy learning with multilayer
connectionist representations. Technical report TR87-
509.3, GTE Laboratories, Incorporated, Waltham,
MA, 1987. (This is a corrected version of the report
published in Proceedings of the Fourth International
Workshop on Machine Learning,103-114, 1987, San
Mateo, CA: Morgan Kaufmann.)

On the Computational Economics of Reinforcement Learning

A. G. Barto and P. Anandan. Pattern recognizing
stochastic learning automata. IEEE Transactions on
Systems, Man, and Cybernetics, 15.360-375, 1985.

A. G. Barto and S. P. Singh. Reinforcement learn-
ing and dynamic programming. In Proceedings of the
Sizth Yale Workshop on Adaptize and Learning Sys-
tems, New Haven, CT, Aug 1990.

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neu-
ronlike elements that can solve difficult learning con-
trol problems. IEEE Transactions on Systems, Man,
and Cybernetics, 13:835-846, 1983. Reprinted in J. A.
Anderson and E. Rosenfeld, Neurocompuling: Founda-
tions of Research, MIT Press, Cambridge, MA, 1988.

A. G. Barto, R. S. Sutton, and P. S. Brouwer. Asso-
ciative search network: A reinforcement learning asso-
ciative memory. IEEE Transactions on Systems, Man,
and Cybernetics, 40:201-211, 1981.

A. G. Barto, R. S. Sutton, and C. Watkins. Learn-
ing and sequential decision making. In M. Gabriel
and J. W. Moore, editors, Learning and Computational
Neuroscience. MIT Press, Cambridge, MA. To appear.

A. G. Barto, R. S. Sutton, and C. Watkins. Se-
quential decision problems and neural networks. In
D. S. Touretzky, editor, Advances in Neural Informa-
lion Processing Systems 2, San Mateo, CA, 1990. Mor-
gan Kaufmann.

D. P. Bertsekas. Dynemic Programming: Delerminis-
tic and Stochastic Models. Prentice-Hall, Englewood
Cliffs, NJ, 1987.

V. Borkar and P. Varaiya. Adaptive control of markov
chains I: Finite parameter set. [EEE Transactions on
Automatic Control, 24:953-957, 1979.

R. O. Duda and P. E. Hart. Pattern Classificalion and
Scene Analysis. Wiley, New York, 1973.

Y El-Fattah. Recursive algorithms for adaptive con-
trol of finite markov chains. JEEE Transactions on
Systems, Man, and Cybernetics, 11:135-144, 1981.

G C. Goodwin and K. S. Sin. Adaptive Fillering Pre-
diclion and Conlrel. Prentice-Hall, Englewood Cliffs,
N.1., 1984.

S. E. Hampson. Conneclionist Problem Soluving. Com-
pulational Aspects of Biological Learning. Birkhauser,
Boston, 1989.

J. H. Holland. Escaping brittleness. The possibility of
general-purpose learning algorithms applied to rule-
based systems. In R. S. Michalski, J. G. Carbonell,
and T. M. Mitchell, editors, Machine Learning: An
Artificial Intelligence Approach, Volume II, pages 593~
623. Morgan Kaufmann, San Mateo, CA, 1986.

D. H. Jacobson and D. Q. Mayne. Diffcrential Dy-
namic Programming. Elsevier, New York, 1970.

M. L. Jordan and R. A. Jacobs. Learning to con-
trol an unstable system with forward modeling. In
D. S. Touretzky, editor, Advances in Neural Informa-
tion Processing Systems 2, San Mateo, CA, 1990. Mor-
gan Kaufmann.

A. H. Klopf. Brain function and adaptive systems—
A heterostatic theory. Technical Report AFCRL-72-
0164, Air Force Cambridge Research Laboratories,
Bedford, MA, 1972. (A summary appears in Proceed-
ings of the International Conference on Systems, Man,
and Cyberneiics, 1974, IEEE Systems, Man, and Cy-
bernetics Society, Dallas, TX.)

A. H. Klopf. The Hedonistic Neuron: A Theory
of Memory, Learning, and Inlelligence. Hemishere,
Washington, D.C., 1982.

P. R. Kumar and Woei Lin. Optimal adaptive con-
trollers for unknown markov chains. JIEEE Transac-
tions on Automatic Conirol, 25:765~774, 1982.

S. Lakshmivarahan. Learning Algorithms and Apph-
cations. Springer-Verlag, New York, 1981.

P. Mandl. Estimation and control in markov chains.
Advances in Applied Probability, 6:40-60, 1974.

K. Narendra and M. A. L. Thathachar. Learning Au-
tomata: An Introduclion. Prentice Hall, Englewood
Cliffs, NJ, 1989.

J. S. Riordon. An adaptive automaton controller for
discrete-time markov processes. Aufomalica, 5:721-
730, 1969.

M. Sato, K. Abe, and H. Takeda. Learning control
of finite markov chains with unknown transition prob-
abilities. IEEE Transaclions on Aulomalic Conirol,
27:502-505, 1982.

M. Sato, X. Abe, and H. Takeda. An asymptotically
optimal learning controller for finite markov chains
with unknown transition probabilities. JEEE Trans-
actions on Automatic Control, 30.1147-1149, 1985.

M. Sato, K. Abe, and H. Takeda. Learning control of
finite markov chains with explicit trade-off between es-
timation and control. JEEE Transaclions on Systems,
Man, and Cybernetics, 18:677-684, 1988.

R. S. Sutton. Temporal Credit Assignment in Rein-
forcement Learning. PhD thesis, University of Mas-
sachusetts, Amherst, MA, 1984,

R. S. Sutton. Learning to predict by the methods of
temnporal differences. Machine Learning, 3.9-44, 1988.

R. S. Sutton. Integrating architectures for learning,
planning, and reacting based on approximating dy-
namic programming. In Proccedings of the Seventh
Intcrnational Conference on Machine Learning, pages
216-224, San Mateo, CA, 1999. Morgan Kaufmann.

C. J. C. H. Watkins. Learning from Delayed Rewards.

43

44

Barto and Singh

PhD thesis, Cambridge University, Cambridge, Eng-
land, 1989.

P.J. Werbos. Advanced forecasting methods for global
crisis warning and models of intelligence. General Sys-
tems Yearbook, 22:25-38, 1977.

P. J. Werbos. Building and understanding adaptive
systems: A statistical/numerical approach to factory
automation and brain research. JEEE Transactions on
Systems, Man, and Cybernetics, 1987,

P. J. Werbos. Generalization of back propagation with
applications to a recurrent gas market model. Neural
Networks, 1:339-356, 1988.

P. J. Werbos. Neural networks for control and sys-
tem identification. In Proceedings of the 28th Confer-
ence on Decision and Control, pages 260-265, Tampa,
Florida, 1989.

R. M. Wheeler and K. S. Narendra. Decentralized
learning in finite markov chains. IEEE Transactions
on Automatic Control, 31:519-526, 1986.

I. H. Witten. An adaptive optimal controller for
discrete-time Markov environments. Information and
Control, 34:286-295, 1977a.

1. H. Witten. Exploring, modelling and controlling dis-
crete sequential environments. Infernational Journal
of Man-Machine Studies, 9:715-735, 1977b.

Reinforcement Comparison

Peter Dayan
Centre for Cognitive Science &
Department of Physics
Untversity of Edinburgh
2 Buccleuch Place
Edinburgh EH8 3LW
Scotland

Abstract

Sutton [2] introduced a reinforcement com-
parison term into the equations governing
certain stochastic learning automata, argu-
ing that it should speed up learning, par-
ticularly for unbalanced reinforcement tasks.
Williams® subsequent extensions [3] to the
class of algorithms demonstrated that they
were all performing approximate stochastic
gradient ascent, but that, in terms of expec-
tations, the comparison term has no first or-
der effect.

This paper analyses the second order contri-
bution, and uses the criterion that its modu-
lus should be minimised to determine an op-
timal value for the comparison term. This
value turns out to be different from the one
Sutton used, and simulations suggest at its
efficacy.

1 INTRODUCTION

Sutton [2] introduced the notion of reinforcement pre-
diction as a way of speeding up the learning of a
class of stochastic learning automata. Most previous
methods made assumptions about the independence
of the learning of the automata from all aspects of
their reinforcement history that were not ‘compiled’
into their current action probabilities. Sutton rea-
soned that comparing the current reinforcement with
some function of its frequency of delivery in the past
might be helpful for determimng whether or not their
actions were making things worse or better. Ie ex-
pected particular utility for such comparisons in the
difficult cases in which reinforcement delivery is un-
balanced - for instance when all actions tend to be
rewarded or punished.

Williams [3] analysed a related set of algorithimns, which
includes Sutton’s, and demonstrated that they werc all
petforming on-line, siochastic gradient ascent in the
expected amount of reinforcement. This is reassuring,

since it implies that the algorithms are moving in the
correct ditection, statistically at least. The surprising
part of his analysis was that, for the particular case
Sutton considered, the comparison term may be elim-
inated from the analysis at an early stage. The result
on stochastic gradient ascent is unaffected by its value.
Sutton’s simulations, however, demonstrated that dif-
ferent comparison terms perform very differently.

Williams essentially looked at the first order term in
the Taylor expansion of the function that relates the
expected reinforcement to the weights determining the
probability of performing the actions. Although the
comparison term vanishes from this, it would not be
expected to vanish from the second and higher order
terms. Second order analysis should reveal for it both
a role, and, potentially, an optimal value.

2 THEORY

2.1 WILLIAMS® ANALYSIS

Williams treats a very general problem. At any time,
each of n units receives an input X! € P, 1 <i<n
from some environment, and uscs its weight vector
w! € RP to determine whether to fire or not, 3 = 1
or y» = 0 respectively. Before it chooses its action,
and before the environment evaluates the combined
set of actions, each unit also chooses a reinforcement
comparison value b,,,1 < i < n,1 < j < p for each
component of cach weight. The environment returns a
global reinforcement value r that is stochastically re-
lated to the quality of the actiuns of the units, and each
unit then updates its weight vector according to the
reinforcement, its chiosen action, and its reinforcement
comparison values.

A simple example of such a reinforcement learning sys-
tem is the two armed bandit problem, which we shall
return to later. For this, the automaton has no inputs,
but chooses, stuchastically on the basis of a stored
weight, to pull either the left arm (y = 0) of the ban-
dit or the right arm (y = 1). The machine delivers
reinforcement of r = &1 with diffcrent probabilitics

45

46

Dayan

for the two arms, and the automaton has to learn, by
changing the weight, which arm it is best to pull.

More formally, Williams proves that if:
Aw;j = aij(r — bij)eij, (1)
where,

r is the reinforcement,

bi; are reinforcement baselines, which are
conditionally independent of the ac-
tions y; given the weights W and the
inputs x*,

a;;j is the learning rate parameter for w,j,

élng;
Swij

is the so-called eligibility
of the weight w;;, a mea-
sure of how influential it
was in choosing the ac-
. tion,

g,-(f,w',x’) = P[y! = flwiyx‘]

is the probability the i**
unit emits action £ given
its weights w* and its in-
put x*.

€j; =

then: 5E[r|W]
T
S[Aw,,[W] = O’;j—r—. (2)
w;,
where W is the matrix of all w'.

Equation 2 implies that these algorithms are all per-
forming stochastic gradient ascent in an averaged
sense. The dependence on the values of the b;; drops
out at an early stage, since:

Eles;|W,x'] = 0.

However, looking at equation 1, it is apparent that
changing the b,, is likely to affect at very least the
stability of the algorithm. Sutton [2] investigated this
empirically for his algorithm, and found faster conver-
gence across a range of problems for b,, being estima-
tors of the average amount of reinforcement received
than for b;; = 0.

2.2 THE SECOND ORDER TERM

Unfortunately, treating higher order terms at the same
level of generality as Williams is not fruitful. Consider
instead the simplest of the cases that Sutton takes.
Here there is just one unit, weights w;, inputs z;, re-
inforcement r, and with:

Aw; = o(r = b)(y - 7)z;

where 7 = E[y|x, w]. b can depend on x and w, but
not on the output y.

A different way of looking at Williams® result is
through the Taylor expansion of £[r'|w, x], using the
prime ’ o indicate that it is the expected value of the

reinforcement that will be received at the next time
step:

Elr'lw, x] =
Elrlw] + 2 E[Awi|w, x]——
82€[r|w]

i Aw: a8 i §
7 o E[dw;Aw;lw, x] Swibw; +....

6€[riw]

4

Williams deals with the first order term, showing that
the first term in the product is proportional to the
second, and that b makes no contribution whatsoever.
Setting F(z) = &[r|z], the second order term is:

§F
; —_6w,-6w,- z;x; ax
> Ply = €lw,xIP[r = plé, x]x
§p
(p - b)*(€ - =)>. (3)

Note that the inner sum does not depend on the value
of i or j. Extracting the value b that minimises it,
gives:

Elr(y — 7)*|w,x]

b=
Viylw,x]
However, y can only take on two values: 0 or 1. Let:
p = Ply=1iw,x]
ro = &frly=0,w,x]
rn = Erly=1,w,x]

then = = p, and

P = p(1 = p)>ry + (1 — p)p*ro

- +
= (epritod)

in which, counterintuitively, the expected reward for
emitting action 1 is paired with the probability of
emitting action 0, and ticc-iersa. Williams (personal
communication) derived the same expression for & on
the grounds of minimising the variance of the Aw,.!
He ultimately considered this an inappropriate reason
for choosing the value of b.

The reinforcement comparison algorithm favoured by
Sutton involves teaching an extra unit to predict the
future reinforcement level. He defines s = 3, viz;,
where v are the prediction weights. These are changed
according to:
Av; = B(r — 8)z;.

This tends to make s an estimator of sorts of £fr|w,x],
or b, where:

b =pry + (1 ~ p)ro.
which, a priori, is the more natural pairing.

'Minimising the variance leads to the same expression
since £[Aw;] is independent of b, and z, factors out.

2.3 CHOOSING b

Although b minimises the inner sum in the second or-
der term of equation 3, it is not yet clear that this is
appropriate. In the one dimensional case, since the re-
inforcement is bounded above and below, the second
derivative §2F /6w? will be positive for some values of
w and negative for others. This means that it is bound
both to speed and hinder the learning. Setting b = b
minimises this effect.

As an example, consider the first task Sutton inves-
tigated, which is a two-armed bandit problem. Here,
there are two possible actions y = 0,1, and:

y=0=> Plr=1]=08 Plr=-1=02
y=1= Plr=1]=09 Plr=-1]=0.1

so the optimal action is y = 1.
Choose Ply = 1juw] = flw) = 1/(1 + &%), then:

Erlw] = 0.6+ 0.2f(w)

§
gsmw] = 0.2f(u)(1~ f(u))
;ﬁg[,,w; = 0.2f(w)(1~ f(w))(1 - 2f(w))

So, with Aw = a(r — b)(y — =), the changes are:

vyl r|?P Aw/a
07-1102(1- f(w)) {1+ 0)f(w}
0] 1] 0.8(1~ f(w)) —(1 =b)f(w)
11-1]0.1f(w —(1+0)(1 — f(w))
1] 1]09f(w 1-5)(1— f(w))

Then £[Au] = o x 0.2f(w)(1 - f(w)), which, as ex-
pected, is independent of b.
However, let g(w) = &frjw] = 0.6 + 0.2f(w), then:
Eflw] = 0.2(1 - f(w))g(w+ af(w)(l + b)) +
0.8(1 — f(w))g(w — af (w)(1- b)) +
0.1f(w)g(w — &(1 — f(w))(1 +8)) +
0.9f(w)g(w + a(l — f(w))(1 - b)),
where F is the reinforceinent received after the automa-
ton’s next choice. & will not drop out of this. It is
apparent from a graph of the second order term that
it helps learning for w < 0 and hinders it for w > 0.
Setting & = b minimises both these effects.
The same will be true in higher dimensions, 1.. that
the second order term will be alternately a hindrance
and 2 help. Minimising its modulus should therefore

increase the overall efficacy of gradieat ascent, which
operates perfectly on linear functions.

There are two types of imbalance that can afflict prob-
lems like the two-armed bandit.

¢ Imbalance in the probabilities - in which both the
batter and the worse action usually lead to the

Reinforcement Comparison

same value of reinforcement, the only different be-
ing in the precise frequency.

o Imbalance in the reinforcement values - in which
the actual reinforcement values received are not
centred around 0. This can make learning sub-
stantially more difficult by making the sign of the
changes in the weights on any one occasion inde-
pendent of the reinforcement received.

Reinforcement comparison only deals with the second
of these types of imbalance. Williams (personal com-
munication) has pointed out that the term r— b; in
the formula for the weight change, equation 1, will
take both positive and negative values if the §;; lie be-
tween the maximum and minimum reinforcement val-
ues. Barto [1] provides some reasons why the term
y — = in the learning rule helps mitigate the effects of
the first tyre of imbalance.

3 RESULTS

Calculating the ‘optimal’ b is more difficult than cal-
culating Sutton’s b', because of the cross-pairing of the
average reinforcement for action 1 with the probabil-
ity of doing action 0. It is possible to develop an es-
timator pf(x) = 3 _ iz with weights v, as in Sutton’s
algorithm, and to change them according to:
1—-=¢ =t

Av;i=p [r‘ {y‘ - +(1-¥)7 _:,} -p‘] z;.
where =° is an approximation to E£[y*jw’]. p° then
estimates & = (1 — p)r; + pro- Since y is never 1 if
= = 0, the first term is never infinite. However, this
iterative scheme would not be expected to converge.

The alternative way, suggested by, but not discussed
in, Sutton’s thesis, is to develop separate predictions
of rg and rq, using two sets of weights. These would
then be combined with =° as (1 — =*)r; + =°ro. Both
methods were simulated.

For the sake of comparison, I used the problems that
Sutton developed for his thesis {2]. The set chosen are
the non-associative ones in Chapter II, although the
new comparison term will work for associative tasks
too. Table 1, copied from Pi§, shows the problems.
The binary tasks produce reinforcement of =1, with
the probability that it is 1 given in the last two columns
of the table. The continuous tasks produce reinforce-
ment spread uniformly within £ 0.1 of the means given
in the last two columns.

Formal descriptions of the algorithms compared are
given in table 2, using Sutton’s notation. Algorithms
A and A’ are Sutton’s algorithms 8 and 9, which he
found to be the best. B, B', C and €’ all make pf
estimate the quantity recommended by the analysis
above. B and B’ do this through a single term. whereas
C and C’ also employ uj and uj, which are designed to
predict ry and ry respectively.

47

Dayan

Table 1: The Tasks (From Sutton).

Task | Reinforcement | » range 7 mean
Type Act 1] Act 0
1 Binary {1,-1} [0.90] 0.80
2 Binary {1,-1} | 0.20| 0.10
3 Binary {1,--1} | 0.55| 045
4 Continuous R 0.90] 0.80
5 Continuous R -0.80 | -0.90
6 Continuous R 0.05 1 -0.05

Figures 1-6 show how the algorithms performed on
each of the various tasks, for differing values of . Fig-
ure 7 shows how the algorithms performed across the
entire range of tasks, choosing for each its best result.
The y-axis shows the terminal probability of choosing
action 1, which is the better action for all of the tasks.
It is apparent that C which uses the new estimator,
does indeed perform better than A and A’ which use
the original one, although not by much. B and B’ are
particularly bad on the two tasks for which reinforce-
ment is generally negative whichever action is taken.
It is unclear why this only happens for these partic-
ular tasks, although dividing by #* or (1 — «*) does
build in an instability. The obvious way to cure this
- multiplying the rule by #*(1 — #*) does not improve
matters substantially.

In a further experiment, the standard deviation o of
the distribution of #[f] was set to 0.5. This value de-
termines the balance between the exploitation of the
current weight wft], and the exploration for a petter
one. Figure 8 is the equivalent of figure 7 for this
case, showing the best performance of the algorithms,
and again aigorithm C can be seen to be somewhat
superior. Indeed, it affords more improvement in this
case. It is also unclear why C should outperform C’,
since Sutton generally found algorithms with eligibil-
ity terms of the form y — &[y] were preferable to those
employing y — 1/2.

A further alternative is to develop explicit estimators
of (1~ p)r, and pry, and to use their sum. In the non-
associative case the resulting algorithms would not dif-
fr greatly from C and C'. They would differ in the
associative case, however, since the learning rule for
these estimators would not change, whereas the equiv-
alents of C and C’' would involve estimrators of ry(x)
and ro(x), which do depend on the input x.

4 CONCLUSIONS

At least one of the ways in which reinforcement com-
parison works is by reducing the effects of the non-
linearity of the function which relates the weights of
a stochastic learning automaton to the expected re-
inforcement. This is not apparent from the first or-

Table 2: The Algorithms (After Sutton).

Algorithm Update Rule
A dulf]=al+ 1) - Pl - 3
A Awlt] = o(rlt + 1] = p[t])(y(t] ~ #[t})
B Awlt) = afrlt + 1] - g[t])(y[t] - 3)
B' Awft] = ofrlt + 1] - o[t])(y[t] - #[t])
c Awlt] = ofrlt + 1) - s[t))(vlt] - 3)

¢ Auf= alrlt+ 1) - sl - ©ld)

Where: Aw(t] = wit + 1) — w[t], and
wl0) = 0,#[0) = 1,4lt] € {1,0},a > 0,

and #[t] is the probability that y[t] = 1.

1, if wlt]+nft] > 0;

For all algorithms, y[f] = { 0. otherwise

where 7[t] is normally distributed My = 0,0 = 0.3]

For A and A/,
Aplt) = B(rlt + 1] - p[t]), p[0] = r[1],
For B and B’,
Agi)= B vt +1) (L3R5 4 w00)
- [t]},
' ql0) = (1),
For C and (',
Aslt]= B (m[t[t-]F 1)(1 = w{t]) + uolt + 1= t]
’ s[0) = #[1],
Au[t] = B(rlt + 1) - us[)y(t], w3 [0] = r[1],

Auolt] = B(rft + 1] = uo[t])(1 - y[t]), uo[0] = (1],
and £ =0.2.

All algorithms are run for 25 iterations (Sutton used
200), and each mark on the graphs in figures 1-7 is the
average over 500 runs.

der term, from which one can only conclude that the
reinforcement comparison algorithms are performing
stochastic gradient ascent, independent of the actual
comparison adopted. The second order term also re-
veals an optimum value for this comparison, and simu-
lations have confirmed that the new term speeds learn-
ing, although it does not make for a dramatic improve-
ment.

This analysis, like Williams’, says nothing about the
convergence of the algorithms. However, Sutton’s sim-
ulations do provide some grounds for optimism.

Acknowledgements

I am very grateful to Andy Barto, Geoff Hinton, Rich
Sutton, Ron Williams, and David Willshaw for their
helpful comments, to the students and faculty of the
Sumimer School for the ambience, and to the SERC for
their money. Part of this work was done at the Univer-
sity of Massachusetts at Amherst, and I particularly
thank Andy Barto for his hospitality.

References

[1] Barto, AG (1985). Learning by statistical cooper-
ation of self-interested neuron-like computing el-
ements. Human Neurobiology, 4:229-256.

{2] Sutton, RS (1984). Temporal Credit Assignment
in Reinforcement Learning. PhD Thesis. Univer-
sity of Massachusetts, Amherst, MA.

{3] Williams, RJ (1988). Toward a theory of rein-
forcement - learning connectionist systems. Tech-
nical Report NU-CCS-88-3, College of Computer
Science, Northeastern University, 360 Huntingdon
Avenue, Boston, MA.

Terminal P(1)

Reinforcement Comparison

a——4 AlgorithmA
o——2¢ AlgorithmA’
+ -4 AlgorithmB
X- - =X AlgorithmB’
¥ —-—~% AlgorithmC
0----~0 AlgorithmC’

Key for the following figures

0.814—

0.71—

L L1

05— |
6,008 0,016 0,031 0,620,125 0,50 0.500 1,000

Figure 1: Task 1

o

49

50 Dayan

~ Lanny
. 10 1ot
o o
g g
= 09t = 091
5 5
= ~
081 08+
0.71 0.74—
0.6 0.64—
e S T I 0 S N
'(?.008 0.0160.031 0.062 0.125 0.250 0.500 1.000 &008 0.01€ 0.0310.062 0.125 0.250 0.500 1.000
0.4 04
Figure 2: Task 2 Figure 4: Task 4
. 1ot ~ 104
o o X
g g /
= 091 = 091
; 5
- ~
081~ 081
0.71- 0.71— ‘><
oo ’*"_*_ ES
067 0.64—
T -.::< &
s | L | | | 05 Ll |
0.0080.016 0.031 0.062 0.125 0.250 0.500 1.000 0.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000
o o

Figure 3: Task 3 Figure 5: Task 5

Reinforcement Comtparison

1.0

Terminal P(1)

Maximum Terminal P(1)

05608 0.016 0.031 0,062 0,125 0.250 0.500 1,000
o

Figure 6: Task 6 Figure 8: All tasks - best performing «,
nft] ~ N0, 0.5]

Maximum Terminal P(1)

task

Figure 7: All tasks - best performing o

Learning Algorithms for Networks with Internal and External
Feedback

Jirgen Schmidhuber*

Institut fiir Informatik
Technische Universitdt Miinchen
Arcisstr. 21, 8000 Miinchen 2, Germany
schmidhu@tumult.informatik.tu-muenchen.de

Abstract

This paper gives an overview of some novel
algorithms for reinforcement learning in non-
stationary possibly reaclive environments. I
have decided o describe many ideas briefly
rather than going inlo greal detail on any
one idea. The paper is structured as fol-
lows: In the first section some lerminol-
ogy is introduced. Then there follow five
seclions, each headed by a short abstract.
The second section describes the entirely lo-
cal ‘neural bucket brigade algorithm’. The
third section applies Sutton’s TD-methods to
fully recurrent conlinually running probabihis-
tic networks. The fourth section describes
an algorithm based on system identification
and on two inieracting fully recurrent ‘self-
supervised’ learning networks. The fifth sec-
tion describes an application of adaptive con-
trol techniques to adaptive atlentive msion:
It demonstrates how ‘selective altention’ can
be learned. Finally, the sizth section criti-
sizes methods based on sysiem identificalion
and adaptive critics, and describes an adap-
tive subgoal generator.

1 Terminology

External feedback. Consider a neural network receiving
inputs from & non-stationary environment and being
able to produce actions that may have an influence
on the environmental state. Since the new state may
cause new inputs for the network we say that there is
external feedback.

Internal feedback. 1f the network topology is cychic,
then input activations from a given time may alter the
way that inputs from later times are processed. In
this case there is a potential for the ‘representation

*This work was supported by a scholarship from
SIEMENS AG

52

of state’, or ‘short term memory’, and we speak of
internal feedback.

Dynamic Learning Algorithms and Nelworks. A prob-
lem that requires credit assignment to past activation
states is called a dynamic problem. Learning aigo-
rithms for handling dynamic problems are called dy-
namic learning algorithms. Learning algorithms that
ate not dynamic algorithms are called static algo-
rithms. For instance, all algorithms that require set-
tling into equilibria while the inputs have to remain
stationary are considered to be static algorithms, al-
though the settling process is a dynamic one based on
internal feedback.

If a given network type can be employed for dynamic
problems, and if there exists a corresponding learn-
ing algorithm, then we sometimes speak of a dynamic
nelwork.

The credit assignment problem. If a neural network is
supposed to learn externally posed tasks then it faces
Minsky’s fundamental credil assignment problem: If
performance is not sufficient, then which component of
the network at which time did in which way contribute
to the failure? How should critical components change
behavior to increase future performance?

Supervised Learming. A learning task is a supervised
learning task if there are externally defined desired
outputs at certain times, but the network never needs
to discover output actions on its own. Supervised
learners have to consider only the internal feedback
for performing credit assignment.

Rewforcement Learning. A learning task is a retnforce-
ment learning task if the teacher only indicates once
in a while whether the system 1s in a desirable state or
not, without giving information about how to reach de-
sirable states. Usually an evaluative (non-instructive)
teaching mechanism sometimes provides a scalar sig-
nal, the reinforcement. whose value indicates success
or failure. During training the network is supposed
to discover on its own outputs that eventually lead to
desirable states. In contrast to supervised learning,

Learning Algorithms for Networks with Internal and External Feedback

there can be something like undesired mnpuls caused
by former output actions. In general the external un-
known dynamics have to be taken into consideration
to perform credit assignment.

Reinforcement learning is strongly related to control
tasks. With many control tasks more information is
available about goal states than just a simple rein-
forcement signal. However, just as with reinforcement
learning, the (sequential) outputs necessary to achieve
the goal states in general are not known.

In the sequel we will concentrate on discrete time ver-
sions of dynamic learning algorithms for neural net-
works. We assume that there are ‘time steps’, and
that state changes only take place from one time step
to the next one, not within a time step.

A weak definition of ‘locality in space and time’ (there
also is a stronger definition). A learning algorithm for
dynamic neural networks is local in time if for given
network sizes (measured in number of connections)
during on-line learning the peak computation complex-
ity at every time step is O(1), for arbitrary durations
of sequences to be learned.

A learning algorithm for dynamic neural networks is
local in space if during on-line learning for limited du-
rations of sequences to be learned and for arbitrary net-
work sizes (measured in number of connections) and
for arbitrary network topologies the peak computation
complexity per connection at every time step is O(1).

A learning algorithm for dynamic neural networks is
locz! if during on-line learning for arbitrary durations
of sequences to be learned and for erbitrary network
sizes (measured in number of connections) and arbi-
trery network topologies the peak computation com-
plexity per connection at every time step is O(1).

These definitions do not imply that a local algorithm
is unable to consider actions that have taken place any
time before.

In the sequel some novel learning algorithms designed
for networks with internal and external feedback will
be described. Due to limited space I will describe many
ideas briefly rather than going into great detail on any
one idea.

2 The Neural Bucket Brigade
Algorithm

Abstract. Compelitive Learning ‘shifls weight sub-

stance’ from cerlain incoming connections of a winner-
take-all-unit lo other incoming connections. A novel
algorithm for goal directed learning with hidden unais
shifts weight substance from outgoing connections to
incoming conneclions. An evalualive critic somelimes
provides weight-substance for conncclions leading lo
output umits. The algorithm's mosl significant advan-

lage over other goal direcled learning algorithms like
back-propagation (Werbos, 1974)(Parker, 1985)(Le-
Cun, 1985)(Rumclhart et al., 1986) 1s. It 1s brologi-
cally more plausible, because it solely depends on com-
putations which are entirely local in space and time.
It has been successfully applied to some classical non-
linear problems mnvolving both feedforward and recur-
rent nelworks.

Competitive Learning (heavily employed in work on
unsupervised learning (Kohonen, 1988) (Grossberg,
1976)) may be interpreted as ‘shifting weight sub-
stance’ from certain incoming connections of a winner-
take-all-unit to other incoming connections (Rumel-
hart and Zipser, 1986). A novel algorithm for goal
directed learning with hidden units emerges if weight
substance is shifted from outgoing connections to in-
coming connections in a certain fashion.

Consider the general reinforcement learning situation
where an evaluative critic in the environment some-
times provides ‘payoff’ in response to successful be-
havior of a learning feedforward or recurrent network.
We translate reinforcement or payofl into weight-
substance for connections leading to output units that
were active in the moment of payoff. All such con-
nections are immediately strengthened proportional to
their last contributions. (A contribution is the product
of a weight and an activation.)

However, even in the absence of payoff there are
weight changes for all weights, including the weights
of connections leading to hidden units. Any connec-
tion transporting activation information from an ac-
tive unit 7 to another active unit j has to give up a
part of its weight substance, which is shifted to those
weights that were setting the stage by contributing to
the activation of unit 7 at the last time step. Thus re-
cursive dependencies ‘through time’ are established be-
tween strengths of connections transporting contribu-
tions during successive time steps. The environmental
critic terminates the recursion. The algorithm shares
certain conceptual similarities with the bucket brigade
learning algorithm’ for rule-based systems (Holland,
1985) and is called the Neural Bucket Brigade Algo-
rithm’. One of the many differences is that competi-
tion works locally instead of globally.

The algorithm’s most significant advantage over
other goal directed learning algorithms like back-
propagation is: [l solely depends on compulalions
which are entirely local in space and time. This means
that during on-line learning the peak compulation per
conneclion 15 not affected by nelwork size or by nel-
work lopology or by the length of inpul scquences. It 1s
always O(1). This makes 1t biologically more plausible
than other algorithms (Schimdhuber, 1989) (Schmid-
huber, 1990a).

The basic network structure is an arbitrary (possibly

53

54

Schmidhuber

cyclic) graph which is partitioned into input units and
small predefined winner-take-all-subsets, each having
at least two members.

Notation: z;(t) is the activation of the jth unit at time
t, wi;(t) is the weight on the directed connection from
unit 7 to unit j at time ¢. ¢;;(t) = 2;(¢ — Nw;;(t — 1)
denotes the ‘contribution’ of some connection between
1 and j at time ¢.

In the beginning weights are initialized with a positive
value. The system is continuously receiving inputs,
and continuously producing outputs, which again may
have an influence on subsequent inputs (external feed-
back). Activations spread according to the following
rules: At time ¢ the input-units are clamped to values
determined by the environment. Each non-input unit
computes net;j(t) =) ;cij(t). The winner-take-all-
subsets ensure that only a fraction of the non-input
units can be active simultaneously: z;(t) equals 1 if
the non-input unit j is active, and 0 otherwise.

If unit j is active then its positive modifiable weights
change according to

cij(t—1)

Awij(t) = —Ae;(t)+ net;(t - 1)

> Acjk(t)+nes;(t)

k active

where 0 < A < 1 determines how much of its weight
some particular connection has to pay to those connec-
tions that were responsible for setfing the stage at the
previous time step. 77 is a small constant if unit j is an
output unit and if there is external payoff, and 7 is 0
otherwise. We get a dissipative system: ‘Weight sub-
stance’ enters the system in the case of payoff, flows
through ‘bucket brigade chains’, and leaves the system
through connections coming from input units.

Note again that the algorithm is entirely local. This
makes a parallel implementation trivial. No teacher
has to define something like beginnings and ends of
back-propagation phases. No storage is required for
past activations or contributions except for the most
recent ones. The units do not care whether they are
part of a feedforward or of a recurrent network. They
do not care for concepts like ‘layer structure’ or net-
work topology. Each unil and each connection 1s per-
forming the same sunple operation at cvery lime step.

The algorithm has been successfully applied to some
classical non-linear problems involving both feedfor-
ward and recurrent networks. Networks employ-
ing that algorithm learned to solve XOR-problems,
encoding-problems, and sequence recognition (motion
on a one-dimensional ‘retina’) as well as sequence gen-
eration (an oscillation task). To address the question
of learning speed: The number of training cycles nec-
essary to find some (not necessarily stable) solution
for the XOR-problem is of the same order of mag-
nitude as with conventional back-propagation. How-
ever, with the more complex encoding problems back-

propagation seems to be faster by about an order of
magnitude.

3 A Reinforcement Comparison
Algorithm for Continually Running
Fully Recurrent Probabilistic
Networks

Abstract. The principle of reinforcement comparison
(employed for learning to play checkers (Samuel, 1959)
and learning to balance a pole (Barto el al., 1983))
says: Let the temporal derivative of the expectation
of future reinforcement be the effective reinforcement.
This principle 1s applied to fully recurrent continually
running networks of probabilistic bina~y units. A main
advantage of the resulting novel algorithm is its appli-
cability to networks with internal (and possibly exter-
nal) feedback and its locality in both space and time
(the absence of back-propagation-like operaiions makes
it biologically more plausible than other algorithms).

In addition to a fully recurrent continually running
network with probabilistic binary output units the al-
gorithin described in this section employs a second
linear static network, called the critic, which learns
to judge successive states of the recurrent network by
learning to predict the final reinforcement to be re-
ceived at the end of the current ‘episode’. Differences
of successive predictions serve to adjust both the critic
and the recurrent network. Hereby the weights of the
critic are updated according to the principles of Tem-
poral Difference Methods (Sutton, 1988):

First all weights are randomly inilialized with real val-
ues.

For all episodes:

In the beginning of each episode, at the first time step,
the actlivations of input unils of the recurrent nelworh
are inilialized with values determined by sensory per-
ceplions from the environment, and the activations of
hidden and oulput units are inilwalized with 0. For all
following time steps, unlil there is external real-valued
reinforcement R indicating failure or success:

Al any given time step t:

1. The critec’s output r = =T (¢ — 1)v(t) 15 interpreted
as a prediclion of the final reinforcement 1o be recerved
in the future. (v(t) 1s the the crilics current weight
veclor, z(t) 1s the activation vector of all unils of the
recurrent network).

2. Each probabilislic non-input unil i of the recur-
rent ncl sums ils weighted imputs, this sum s passed
to the logistic fun.tion l(z) = yi== which gives the
probability that the 1ctivation xz,(t) becomes 1, or 0,

Learning Algorithms for Networks with Internal and External Feedback

respectively. Each unil i also stores s last activation
z,(t — 1). Outpul units may cause an action in the
enwironment, and this may lead {o new activations for
the input units. So besides the internal feedback there
may ezisl external feedback through the environment.

3. If there is external reinforcement R (this means
the end of the current episode) then the variable v is
defined to be equal to R.

Otherwise r' is defined to be a new estimation of final
discounted reinforcement: v' = yzT (t)u(t). (0 < y< 1
is the discount rate).

The crilic associates the last activation vector z(i— 1)
of the recurrent network with r', thus ‘transporting
ezpeclation back in time' for one time step. So the
critic’s error 1s gwen by v’ —r. Its weight vector 1s 1m-
mediately updated according to the Widrow-Hoff rule,
the result 15 a new weight vector v(t + 1).

4. Each directed weight w;;(t) from unit i to unit j of
the recurrent network is immediately allered according
to Aw;j(t) = Mr' —r)zi(t = 1)(z;() - P(z; =1 | z(t -
1), w(t—1)) , where w(t — 1) s the last weight vector,
and A is a positive constant. Thus the last transition
gels encouraged (or discouraged, respectively).

The algorithm applies the principle of reinforcement
comparison to dynamic recurrent neural networks
(Schmidhuber, 1990d). Informally, this principle also
can be formulated as follows:

If a system is in a state which it assumes to be a bad
state, but there is a transition which leads to a state
assumed to be a good state, then this transition should
be encouraged. Furthermore, from now on the ‘bad’
state also can be considered to be a good state. Transi-
tions from good states to bad states have to be treated
in an analogue fashion.

Note again that unlike with back-propagation-like al-
gorithms for recurrent networks the algorithm above is
local in both space and time. 'This means that during
on-line learning the peak compulation per connection
is nol affected by nelwork size or input duralion. It is
always O(1).

It 1s worth mentioning a counterintuitive fact. The
critic may be linear, however, the task of the recurrent
network may be of the non-linearily separable type.
Thus has been shown by successfully applying the al-
gorithm to a ‘delayed XOR-problem’. A reinforcement
signal given in the end of each training episode (involv-
ing a small number of time steps) indicated whether
the recurrent network correctly computed the delayed
response to one of the four XOR patterns. The critic
may be linear, because the final mapping to be imple-
mented by the critic in general is simpler than the final
mapping to be implemented by the main network.

The algonithm shares certain conceptual similarities

with the ‘neural bucket brigade algorithm’ (Schmidhu-
ber, 1990g). In (Schmidhuber, 1990d) it also has been
described how a recurrent critic can interact with the
recurrent primary network.

4 Two Interacting Fully Recurrent
Self-Supervised Learning Networks
for Reinforcement Learning

Abstract. An ezlension of system identification ap-
proaches for adaptive conirol by Werbos, Jordan,
Munro, Widrow, and Robinson and Fallside is de-
scribed. The algorithm is based on two interacting
Jully recurrent continually running networks which
may learn in parallel. The algorithm has a potential for
on-line learning and locality in time, it does not care
for ‘epoch-boundaries’, it needs only reinforcement in-
formation for learning, it allows different kinds of rein-
forcement {or pamn), 1t allows both internal and exter-
nal feedback with theoretically arbitrary time lags, and
il wincludes a full environmental model thus providing
complete ‘credil assignment paths’ into the past.

An extension of system identification approaches for
adaptive control ((Werbos, 1977), (Jordan, 1988),
(Munro, 1987), (Nguyen and Widrow, 1989), (Robin-
son and Fallside, 1989)) is described.

The algorithm attempts to be a very general one. It
attacks the fundamental spatio-temporal credit assign-
ment problem as far as it is attackable at all by pure
gradient descent methods (Schmidhuber, 1990b).

The output units of a dynamic recurrent conirol net-
work may influence the state of a reactive non-
stationary environment, thus influencing subsequent
inputs of the control network. The input of a dy-
namic fully recurrent model network at every time is
given by the input and the output of the control net-
work. The model network is trained to predict future
activations >f the input units of the control network.
Among the control nelwork’s inpul unils there are ‘re-
mforcemenl unils’ whose desired activations are fized
for all imes. For instance, the desired activations of
so-called ‘pain-units’are zero for all times. At a given
time the quantity to be minimized by the controller is
Soeale—u:(1))?, where y,(2) is the activation of the ith
reinforcement input unit at time ¢ and ¢, is its desired
activation for all times. (¢ ranges over all (discrete)
time steps that are still to come.)

Following the approach of system identification, the
rmodel network helps to define desired output acti-
vations for the control network. Errors for the con-
troller’s weights are computed by measuring the par-
tial derivatives of cumulative pain predictions of the
model network with respect to controller weights.
Hereby the frozen model network is taken to be an

]

56

Schmidhuber

emulator of the environmental dynamics.

The algorithm can be run in two different modes:
There is the sequential version and the parallel version.
With the sequential version, first the model network
is trained by providing it with randomly chosen ex-
amples of sequences of interactions between controller
and environment. Then the model weights are fixed to
their current values, and the controller begins to learn.

With the parallel version both the controller and the
model learn concurrently. The advantage of the par-
allel version is that the model network focusses only
on those parts of the environmental dynamics which
the controller typically is confronted with. Particu-
larily with complex environments this represents an
enormous potential for gaining efficiency. The disad-
vantage of the parallel version is that the controller
sometimes receives wrong error gradients caused by
an inperfect model. This should not be serious, as
long as the model continues to improve. However, the
controller might enter a local minimum relative to the
current state of the model network’s weights. This in
turn may cause the controller to perform the same silly
actions all the time, thus preventing the model network
from improving (learning about the effects of alterna-
tive actions). Then the whole system might be caught
in a state from which it cannot escape any more. The
sequential version represents a safer way, but it lacks
the flavor of real on-line learning and locality in time.

Below we describe the parallel version. The sequential
version can be obtained in a straight-forward manner.
An on-line version of the Infinite Input Duration (IID)
learning algorithm for fully recurrent networks (Robin-
son and Fallside, 1987) is employed for training both
the model network and the control network. (The IID
algorithm was first experimentally tested by (Williams
and Zipser, 1989).)

At every time step, the parallel version of the algo-
rithm is performing essentially the same operations.

In step 1 of the main loop of the algorithm actions in
the external world are computed. Due to the internal
feedback, these actions are based on previous inputs
and outputs. For all new activations, the correspond-
ing derivatives with respect to all controller weights
are updated.

In step 2 actions are executed in the external world,
and the effects of the current action and/or previous
actions may become visible.

In step 3 the model network tries to predict these ef-
fects without seeing the new input. Again the relevant
gradient information is computed.

In step 4 the model network is updated in order to
better predict the input (including reinforcement and
pain) for the controller. Finally, the weights of the
control network are updated in order to minimize the

cumulative differences between desired and actual acti-
vations of the pain and reinforcement units. Since the
control network continues activation spreading based
on the actual inputs instead of using the predictions
of the model network, ‘teacher forcing’ (Williams and
Zipser, 1989) is used in the model network (although
there is no teacher besides the environment).

One can find various improvements of the systems de-
scribed in (Schmidhuber, 1990b) and (Schmidhuber,
1990e). For instance, the partial derivatives of the con-
troller’s inputs with respect to the controller’s weights
are approximated by the partial derivatives of the cor-
responding predictions generated by the model net-
work. Furthermore, the model sees the last input and
current output of the controller at the same time.

Notation (the reader may find it convenient to compare
with (Williams and Zipser, 1989)):

C is the set of all non-input units of the conlrol net-
work, A is the set of ils oulput units, I s the set of its
‘normal’ input units, P 1s the set of ils pain and rein-
forcement untts, M 1s the sel of all units of the model
network, O is the set of ils outpul units, Op C O 1s the
set of all units that predict pain or reinforcement, Wiy
ts the set of variables for the weights of the model net-
work, W¢ is the set of variables for the weights of the
control network, y,. ., ts the variable for the updated
aclivation of the kth unit from MUCUIUP, y,,,
is the variable for the last value of yx, ., w,; is the
variable for the weight of the directed connection from
unit § to unit i, pf]nzu is the variable which gives the

current (approzimaled) value of 2%%}“:&, Pfj,u s the

variable which gives the last value of pf; , ifk € P
then ¢ is k’s desired activation for all mmes, og 1S
the learning rate for the control network, aps 1s the
learning rate for the model network.

| TUP|=]O |, |0p |=| P|. Ifk e IUP, then
kpred is the unit from O which predicts k. Each unit
from IUPUA has one forward conneciion to cach unut
from M UC. Each unit from M is connecled o cach
other unit from M. Each unil from C 15 connecled to
each other unit from C. Ea:h weight of a conneclion
leading 1o a unit in M 15 said to belong to Wyy. Each
weight of a conneclion leading to a unit in C is said lo
belong to We. Each weight wi; € Wiy necds pfj-valucs

forallk € M. Each wewght w,; € We needs pfj-valucs
forallke MUCUIUP.

The parallel version of the algorithm works as follows:

Learning Algorithms for Networks with Internal and External Feedback

INITIALIZATION:
For all ws; € War UWe:

begin w;; «— random,

for all possible k: pfkjold — O,pfjnw «— 0 end.
Forallk e MUC : yg 1y = 0,Y,... — 0.
Forallke IUP :

Set yr,,, by environmental perception, yi,., < 0.

FOREVER REPEAT:

L ForallicC:y,,, — L .
For allwy; e We, ke C:
Pl — Yknew (1= Ykneu (1 witDly ,, + ik Yjra)-
ForallkeC:
begin Yroe — Yknews
for allwi; € We pfjo“ c-—pf-‘jnm end .
2. Ezecule all motoric actions based on aclivations of
unils in A. Update the environment.
Forallie IUP:

Set y;,., by environmental perception.

3. Forallie M :y;, + 1 .
l4e 2, "riviatd
For all w;ij € War UWe, ke M:
p?jm,‘, - yknc\n(l - ykn:u)(ZI wklpijou +6ikijld)
Forallke M:
begin Yro1y — Yknews
for allw,, e We UWny : pf, |, — pfhw end.
4. For all wi; € Wyy:

.. .. kpred
wij — Wij +oar Zkelul’(ykncu ~ Ykpredaia)Pij,,., -

For all wij € We:

.. . kpred
wij — wij + ac zkep(ck - yk,.e..)Pij,.d .

Forallk e IUP:
begin Ykota © Yknews Ykpredog = Yknews
for all wi; € Why : p:'cj;:’;:d ~0,

. Lk kpred
for allw,; € We : pjj,, —p;l..° end.

To attack the above-mentioned problem with the par-
allel version of the algorithm we can introduce a prob-
abilistic element for the controller actions. By em-

ploying probabilistic output units for C and by using
‘gradient descent through random number generators’
(Williams, 1988) we can introduce explicit explorative
random search capabilities into the otherwise deter-
ministic algorithm. In the context of the IID algo-
rithm, this works as follows: A probabilistic output
unit % consists of a conventional unit ku which acts
as a mean generator and a conventional unit ko whicn
acts as a variance generator. At a given time, the
probabilistic output yi, . is computed by

yknew = ykl‘ncw + zykanew’
where z is distributed e.g. according to the normal
distribution. The corresponding pfj ., have to be up-
dated according to the following rule:

Ry | s TN

p,.’ngw pt],.ew + y};g""’ tInew

By performing more than one iteration of step 1 and
step 3 at each time tick, one can adjust the algorithm
to environments that change in a manner which is
not predictable by semilinear operations (theoretically
three additional iterations are sufficient for any envi-
ronment).

The parallel version of the algorithm is local in time,
but not in space. See (Schmidhuber, 1990b) for a jus-
tification of certain deviations from ‘pure gradient de-
scent through time’, and for a description of how the
algorithm can be used for planning action sequences.

Variants of the algorithm are currently tested on cer-
tain non-Markovian reinforcement learning tasks. For
instance, a controller was able to learn to be a flip-flop
similar to the one described in (Williams and Zipser,
1989). Of course, the important difference was that no
teacher provided the desired outputs!

Other experiments are currently conducted with a
non-Markovian pole balancing task. Unlike with tasks
described in (Barto et al., 1983) and (Anderson, 1986),
no information about temporal derivatives of the sys-
tem’s state variables (cart position, pole angle with
the vertical) is provided. The recurrency of the model
network provides a potential for extracting this kind
of information, and to represent the state of the en-
vironment in a form that allows credit assignment for
the controller.

In (Schmidhuber, 1990b) it is described how the algo-
rithm can be employed for planning action sequences.
It should be noted that the algorithm also could be
used as a submodule in an adaplive critic system con-
sisting of three networks (Schmichuber, 1990f), where
the adaptive critic computes veclor-valued predictions
of future events. This contrasts previous adaptive crit-
ics, whose output is just a scalar evaluation of the cur-
rent state.

The parallel version of the algorithm described above
has properties which allow to implement something

57

58

Schmidhuber

like the desire to improve the model network’s knowl-
edge about the world. This is related to curiosity.
In (Schmidhuber, 1990c) it is described how the al-
gorithm can be augmented by dynamic curiosily and
boredom in a natural manner. This can be done by in-
troducing (delayed) reinforcement for actions that in-
crease the model network’s knowledge about the world.
This in turn requires the model network to model its
own ignorance, thus showing 2 rudimentary form of
self-introspective behavior.

»

5 An Example for Learning Dynamic
Selective Attention: Adaptive Focus
Trajectories for Attentive Vision

Abstract. It 15 shown how cerlain cases of selective at-
tention can be learned. ‘Static' neural approaches to
certamn paltern recognifion tasks can be replaced by a
more efficient sequential approach. A system 1s de-
scribed which learns o generate focus irajeclorzes such
that the final posilion of a moving focus corresponds
lo a target in a visual scene. No teacher provides the
desired aclivalions of ‘eye-muscles’ al vartous limes.
The only goal information is the desired final input
corresponding 1o the targel. The task involves a com-
plez temporal credit assignment problem and an alten-
tion shifting problem. The system also learns o irack
moving largets.

There is little doubt that selective attention is essential
for large scale dynamic control systems. In this section
we study the problem of learning selective attention in
the context of attentive vision with dynamic neural
networks. The problem, which in its general form has
not been explored before, is the control of sequential
physical focus-movements. Hereby we concentrate on
the question: How can an attentive vision system learn
without a leacher to generate focus trajectories such
that the final visual input always looks like a desireable
input corresponding to a target?

A visual scene is given by an object (with internal de-
tails) placed on a 512 x 512 pixel field. The object cov-
ers only a small part of the scene and may be rotated
or translated in an arbitrary manner. Instead of using
tenthousands of input units (as in a straight-forward
static approach) only about 40 input units arc em-
ployed. However, these units are sitting on a focus (a
iwo-dimensional artificial retina) which can be moved
across Lhe pixel plane. The focus has high resolution
in its center and low resolution in its periphery.

In our approach there is a neural control network C'
that controls sequential focus movements. Motoric ac-
tions like ‘move focus left’, ‘rotate focus’ are based on
the activations of the C''s output units at a given time.
Thus output actions may cause new activations for the
input units, and we say that there is external feedback

(through the environment). The final desired input is
an activation pattern corresponding to the target in a
static visual scene. The task is to sequentially gener-
ate a focus trajectory such that the final input matches
the target input. C’s error at the end of a sequential
recognition process is given by the difference between
the desired final input and the actual final input. (Con-
trol theory calls this a ‘terminal control problem’.)

Pure supervised learning techniques for neural net-
works work only if there is a teacher who provides tar-
get oulpuis at every time step of a trajectory (which in
our case usually involves about 30 time steps). In our
case, however, there never are externally given desired
outputs. There only is one final desired input.

In order to allow credit assignment to past output ac-
tions of C', we employ a supervised learning model nel-
work M which separately learns to represent a model
of the visible environmental dynamics. This is done by
training M at a given time to predict C’s next input.
This prediction is based on previous inputs and out-
puts of the controller. M serves to ‘make the world
differentiable’. It serves to bridge the gap between
output units and input units of the controller.

A learning algorithm for dynamic recurrent networks
is employed to propagate gradient information for
C’s weights back through M down into C and back
through M etc... M’s weights remain fixed during
this procedure. In different contexts and with dif-
ferent degrees of generality, this basic principle for
credit assignment based on system ideniification has
been previously described in (Werbos, 1977), (Jor-
dan, 1988), (Munro, 1987), (Robinson and Fallside,
1989), (Nguyen and Widrow, 1989), and (Schmidhu-
ber, 1990b).

Note that in most cases the model network will not be
perfect. For instance, if objects in a visual scene may
occupy random positions then it will be impossible for
M to exactly predict future focus inputs from previous
ones. However, it is not intended to make the model a
perfect predictor whose output could replace the input
from the environment (in that case not much would be
gained compared to the static approach: There would
be no need for dynamic attention). It suffices if the
inner products of the approximated gradients (based
on an inaccurate model) for the control network and
the true gradients (according to a perfect model) tend
to be positive.

M’s main task is to help the controller to move the
focus into regions of the plane which allow lo continue
with more mformed moves. (Although one can not ex-
actly predict what one will see after moving one’s eyes
to the door, one is setting the stage for additional eye-
movements that help to recognize an entering person.)

One goal of this work is to demonstrate that imper-
fect models can contribute to perfect solutions. Our

Learning Algorithms for Networks with Internal and External Feedback

experiments show that the system described above s
able to learn (withoul a teacher) correct sequences of
focus morements muvoluing {ranslations and rotations,
although M often makes erroncous predictions. At
the end of a trajectory, the focus has moved towards
a certain target part of the object and is rotated such
that the final input corresponds to the desired input
(Schmidhuber and Huber, 1990) (Huber, 1990).

Further experiments showed that the system is well-
suited for target fracking. The desired detail of the
moving object soon is focussed and tracked, as long as
the objects velocity does not excess the maximal focus
velocity.

Further experiments were conducted where C' and M
learned concurrently. It was found that two interact-
ing conventional deterministic networks were not ap-
propriate. So each of C’s output units was replaced
by a little network consisting of two units, one giv-
ing the mean and the other one giving the variance
for a random number generator which produced ran-
dom numbers according to a continuous distribution.
(We approximated a Gauss distribution by a Bernoulli
distribution.) Weight gradients were computed by ap-
plying William’s concept of ‘back-propagation through
random number generators’ (Williams, 1988).

It was found that such an on-line learning system can
be able to learn appropriate focus trajectories. As it
was expected, after training M was a good predictor
only for those situations which the controller typically
was confronted with.

6 An Adaptive Subgoal Generator
for Planning Action Sequences

Abstract. None of the ezisling learning algorithms
for sequentially working neural nelworks with inler-
nal and/or external feedback addresses the problem of
learning “lo divide and conquer’. It is arqued that algo-
rithms based on pure gradienl descenl or on adaplive
critic methods are not suitable for large scale dynamic
control problems, and that there is a need for algo-
rithms that perform ‘composilional learning’. A sys-
tem is described which solves al least onc problem asso-
cated with compositional learning. The system learns
fo generale sub-goals. This 1s done wih the help of
‘lime-bridging’ adaptive models that predict the effects
of the syslem’s sub-programs.

The algorithms for attacking the fundamental credit
assignment problem with dynamie learning algorithms
in non-stationary e¢nvironments can be classified into
two major categories.

First, there is the approach of bach-prupagation
through time’. This approach has been pursued by
(Robinson and Fallside. 1987). (Weibos, 1988), (Pearl-

mutter, 1989), (Rumelhart et al., 1986), (Williams and
Zipser, 1989), (Gherrity, 1989) and others in the case
where there is only internal feedback. It has been pur-
sued by (Nguyen and Widrow, 1989), (Robinson and
Fallside, 1989), (Werbos, 1977), (Jordan, 1988), and
(Schmidhuber, 1990b) in the case where there also is
external feedback through a reactive environment.

Second, there is the ‘Adaptive Critic’ approach, which
is of primary interest in the case of external feedback.
This approach has been pursued by (Samuel, 1959),
(Barto et al., 1983), (Werbos, 1990), and (Schmidha-
ber, 1990d).

Both the algorithms based on pure gradient descent as
well as the ‘Adaptive Critic' algorithms have at least
one thing in common. They show significant draw-
backs when the credit assignment process has to bridge
long time gaps between past actions and later conse-
quences.

Both approaches show awkward performance in the
case where the learning system already has learned a
lot of action sequences in the past. Both approaches
tend to modify ‘sub-programs’, instead of modify-
ing the trigger conditions for sub-programs. They
do not have an explicit concept of something like a
sub-program. Pure gradient descent methods always
consider all past states for credit assignment. Adap-
tive critics based on Sutton’s “Temporal Differences’
(reinforcement comparison methods) or on Werbous’
‘Heuristic Dynamic Programming’ consider only the
most recent states for ‘handing expectations back into
time’. Both methods in general tend to consider the
wrong states. This is a major reason for their slow
performance.

In the next section we will isolate one problem as-
sociated with ‘compositional learning’, namely, the
problem of learning to generate sub-goals when there
already exist a number of working sub-programs
(Schmidhuber, 1990h).

6.1 Learning to Generate Sub-Goals

The sub-goal zenerating system to be described in this
section consists of three modules. The heart of the
system is a neural network with internal and external
feedback. called the control network C. C serves as a
program executer. It receives as input a start state.
a desired goal state, and time-varying inputs from the
environment. The start and goal states serve as ‘pro-
gram names’. We assume that C already has learned
to solve a number of tasks. This means that there al-
ready are various working programs that actually lead
from the start states to the goal states by which the
programs are indexed. These programs may have been
learned by an algorithm for dynamic networhs (as de-
scribed by the authors mentioned above), or by a rec-
cursitc application of the princaiple outlined belou.

59

60

Schmidhuber

A second important module is a static evaluator net-
work E which receives as input a start state and a goal
state, and produces an output that indicates whether
there is a program that leads from the start state to
or ‘close’ to the goal state. An output of 1 means that
there is an appropriate sub-program, an output of 0
means that there is no appropriate sub-program. An
output between 0 and 1 means that there is a sub-
program that leads from the start state to a state that
comes close to the goal, in a certain sense. This mea-
sure of closeness has to be given by some evaluative
process that may be adaptive or not, and which will
not be specified in detail in this paper., (It may be
based on TD-methods, for instance.) E represents the
system’s current model of its own capabilities. We as-
sume that E has learned to correctly predict that each
of the already existing sub-programs works. We also
assume that E is able to predict the closeness of an
end state of a sub-program to a goal state, given a
start state. E can be trained in an exploratory phase
during which various combinations of start and goal
states are given to the program executer.

Finally, the system contains a static network which
serves as a sub-goal generator. The sub-goal generator
receives as input the external start-input to C, and the
desired input (the goal) for C at the end of the task.

The output of the sub-goal generator is a sub-goal, of
course. Like the goal, the sub-goal is an activation
pattern describing the desired external input at the
end of some sub-program, which also is the start in-
put for another sub-program. We concentrate on the
most simple case, namely, the case where solutions for
given tasks can be found by generating only one sub-
goal. The sub-goal generator should output a sub-goal
for which there exists a sub-program leading from the
start state to the sub-goal, and furthermore a sub-
program leading from the sub-goal to the goal state.

How does the sub-goal generator, which initially is a
tabula rase, learn to generate appropriate sub-goals?
We take two copies of E. The first copy sces the de-
scription of a start state and the description of the sub-
goal generated by the sub-goal generator. The second
copy sees the description of the same sub-goal and the
description of the goal. The desired output of each
of the copies is 1. Whenever one of the outputs of
the copies is below 1, an error gradient is propagated
through E's copies down inlo the sub-goal generalor.
E (as well as its copies, of course) remain unchanged
during this procedure. Only the weights of the sub-
goal generator change. For a given problem the proce-
dure is iterated until the complete error is zero (corre-
sponding to a solution obtained by combining the two
sub-programs), or until a local minimum is reached
(no solution found). The gradient descent procedure
is used for a search in sub-goal space.

In some experiments with a simple environment a
robot was taught to solve certain sequential tasks, like

moving from one point to another one. Then more
complicated tasks were posed that did not have an as-
sociated sub-program.

The sub-goal generalor soon learncd to generate appro-
priete sub-goals for the robot.

It should be noted that there also is a different slightly
more complex architecture which allows veclor-valued
evaluations of the expected effects of sub-programs.

References

Anderson, C. W. (1986). Learning and Problem
Solving with Multilayer Connectionist Syslems.
PhD thesis, University of Massachusetts, Dept.
of Comp. and Inf. Sci.

Barto, A. G., Sutton, R. S., and Anderson, C. W.
(1983). Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE
Transactions on Systems, Man, and Cybernelics,
SMC-13:834-846.

Gherrity, M. (1989). A learning algorithm for analog
fully recurrent neural networks. In IEEE/INNS
International Joinl Conference on Neural Nel-
works, San Diego, volume 1, pages 643-644.

Grossberg, S (1976). Adaptive pattern classification
and universal recoding, 1: Parallel development
and coding of neural feature detectors. Biological
Cybernetics, 23:187-202.

Holland, J. H. (1985). Properties of the bucket brigade.
In Proccedings of an International Conference on
Genelic Aigorithms. Hillsdale, NJ.

Huber, R. (1990). Selektive visuelle Aufmerksamkeit:
Untersuchungen zum Erlernen von Fokustrajek-
torien durch neuronale Netze. Diplomarbeit.
Institut fir Informatik, Technische Universitat
Miinchen.

Jordan, M. I. (1988). Supervised learning and sys-
tems with excess degrees of freedom. Technical
Report COINS TR 88-27, Massachusetts Institute
of Technology.

Kohonen, T. (1988). Sclf-Organization and Associatite
Memory. Springer, second cdition.

LeCun, Y. (1985). Une procédure J'apprentissage pour
réseau a seuil asy métrique. Proccedings of Cogmi-
tiva 85, Paris, pages 599-604.

Munro, P. W. (1987). A dual back-propagation scheme
for scalar reinforcement learning. Proceedings of
the Ninth Annual Conference of the Cogmirve Sci-
ence Sociely, Seatlle, WA, pages 165-176.

Nguven and Widrow, B. (1989). The truch backer-
upper: An example of self learning in neural net-
works. In IEEE/INNS Inlernalional Jomnt Con-
Jerenee on Newral Nelworks, Washmglon, D.C..
volume 1. pages 357 364,

Learning Algorithms for Networks with Internal and External Feedback

Parker, D. B. (1985). Learning-logic. Technical Report
TR-47, Center for Comp. Research in Economics
and Management Sci., MIT.

Pearlmutter, B. A. (1989). Learning state space trajec-
tories in recurrent neural networks. Neural Com-
putation, 1:263~269.

Robinson, A. J. and Fallside, F. (19587). The utility
driven dynamic error propagation network. Tech-
nical Report CUED/F-INFENG/TR.l, Cam-
bridge University Engineering Department

Robinson, T. and Fallside, F. (1989). Dynamic rein-
forcement driven error propagation networks with
application t¢ game playing. In Proceedings of the
11th Conference of the Cognitive Scicnce Sociely,
Ann Arbor, pages 836-843.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning internal representations by er-
ror propagation. In (Rumelhart and McClelland,
1986), pages 318-362.

Rumelhart, D. E. and McClelland, J. L., editors
(1986). Parallel Distributed Processing, volume 1.
MIT Press.

Rumelhart, D. E. and Zipser, D. (19586). Feature dis-
covery by competitive learning. In (Rumelhart
and McClelland, 1986), pages 151-193.

Samuel, A. L. (1959). Some studies in machine learn-
:ng using the game of checkers. IBAf Journal on
Research and Development, 3:210-229.

Schmidhuber, J. H. (1989). The neural bucket brigade.
In Pfeifer, R., Schreter, Z., Fogelman, Z., and
Steels, L., editors, Connec.comism n Perspec-
tive, pages 439-146. Amsterdam: Elsevier, North-
Holland.

Schmidhuber, J. H. (1990a). A local learning algorithm
for dynamic feedforward and recurrent networks.
Conneclion Science, 1(4):403-412.

Schmidhuber, J. H. (1990b). An on-line algonthm for
dynariic reinforcement learning and planning in
reactive environments. In Proc. IEEE/INNS In-
ternational Joinl Conference on Neural Networks,
San Dicgo, volume 2. pages 253-258.

Schmidhuber, J. H. (1990c). A possibility for imple-
menting curiosity and boredsm in model-building
neural centrollers. In Proc. of the Inicrnaiional
Conference on Simulalion of Adeplive Behar-
wor: From Anunals lo Animals, i press. MIT
Press/Bradford Books.

Schmidhuber, J. H. (1990d). Recurrent networks ad-
justed by adaptive critics. In Proc. IEEE/INNS
International Jomnl Conference an Neural Nel-
works, Washington. D. C., volume 1, pages 719-
722.

Schmidhuber, J. H. (1990¢). Reinforcement learning
with interacting continually running fully recur-

rent networks. In Proc. INNC International Neu-
ral Network Conference. Paris. volume 2, pages

817-820.

Schmidhuber, J. 1. (1990f). Response to G. Lukes’ re-
view of ‘Recurrent networks adjusted by adaptive
critics’. Neural Nelwork Review, in press.

Schmidhuber, J. H. (1990g). Temporal-difference-
driven learning in recurrent networks. In Ech-
miller, R., Hartmann. G., and Hauske, G.. edi-
tors, Parallel Processing in Xeural Systems and
Compulers, pages 209-212. North-Holland.

Schmidhuber, J. H. (1990h). Towards compusitiuvnal
learning with dynamic neural networks. Techni-
cal Report FKI-129-90, Institut fiir Informatih,
Technische Universitat Minchen.

Schmidhuber. J. H. and Huber, R. (1990). Learning
to generate focus trajectories for attentive vision.
Technical Report FKI-128-90, Institut fur Infor-
matik, Technische Universitit Miinchen.

Sutton, R. S. (1988). Learning to predict by the meth-
ods o temporal differences. Mackine Learning,
3:9-44.

Werbos, P. J. (1974). Beyond Regression. Neuw Tools
for Prediction and Analysis in the Behavioral Sci-
ences. PhD thesis, Harvard University.

W-rkos, P. J. (1977). Advanced forecasting methods
for global crisis warning and models of intelli-

gence. In General Systems. volun.» XXII. pages
25-38.

Werbos, P. J. (1988). Generalization of backpropaga-
tion with application to a recurrent gas market
model. Neural Networks, 1.

Werbos, P. J. (1990). Consistency of HDP applied to
a simple reinforcement learning problem. Nezral
Networks, 2:179-~189.

Williams, R. J. (1988). On the use of backpropagation
in associative reinforcement learning. In IEEE [n.
ternational Conference on Neural Neliworks. San
Diego. volume 2, pages 263-270.

Williams, R. J. and Zipser, D. {1989}, Expenimental
analysis of the real-time recurrent learning algo-
rithm. Connerfion Science, 1{1):87-111.

61

Part I

Genetic Learning

Exploring Adaptive Agency I:
Theory and Methods for Simulating the Evolution of Learning

Geoffrey F., Miller
Department of Psychology
Jordan Hall, Building 420
Stanford University

Stanford, CA 94305
geoffrey@psych.stanford.edu

Abstract

Psychology construed as the scientific study
of adaptive agency can include not only
modelling of specific psychological adapta-
tions in particular species, but general ex-
ploration of the adaptive processes (including
evolution, leamning, and computation) that
build, modify, and instantiate those adapta-
tions. Connectionist theory has concentrated
on understanding the adaptive processes of
learning and computation, and has assumed
general-purpose leaming principles as the
prime constructors of p:ychological adapta-
tions. But connectionism has thereby ignored
the central lesson of a century of leaming
theory in psychology: leamning mechanisms
must be understood in terms of their specific
adaptive functions, just like other psychologi-
cal adaptations. This paper introduces the
notion of psychology as the study of adaptive
agency, outlines a hierarchy of adaptive
processes underlying adaptive agency, and
reviews the history of learning theory and the
emergence of ecological and evolutionary ap-
proaches to learning. We then develop a tax-
onomy of adaptive functions that leaming
mechanisms might serve, and outline a gen-
eral simulation framework for explorin;
those adaptive functions. Finally, we present
empirical results concerning the simulated
evolution of associative learning.

Copyright © 1990 Geoffrey Miller and Peter Todd

Peter M. Todd
Department of Psychology
Jordan Hall, Building 420
Stanford University
Stanford, CA 94305
todd@psych.stanford.edu

1 INTRODUCTION

Natural selection has constructed animals’ minds and
behavioral repertoires for adaptive fit to the environmen-
tal problems they must face. As the study of such minds
and behavioral repertoires, a properly evolutionarily-
informed psychology should focus on the notion of adap-
tive agency -- the generation of action in the world in
response to challenges to fitness. This framework en-
compasses many approaches, including (A) analysis and
modelling of complex species-typical psychological
adaptations (as in human and animal experimental
psychology and cognitive ethology), (B) comparison of
psychological adaptations across species and considera-
tion of their phylogenetic origins (as in comparative
psychology), and (C) general exploration of the adaptive
processes themselves that yield adaptive agency (e.g. by
simulation methods, including those in the field of
artificial life -- see Langton, 1989). Most connectionists
doing psychological modelling have contributed primari-
ly to the first of these three enterprises. This paper con-
centrates on the third.

One of the central applications of connectionist theory
has been to develop parallel distributed processing
models of psychological mechanisms in humans and, less
frequently, other animals (e.g. Rumelhart & McClelland,
1986, Vol. II; Sutton & Barto, 1987; Gluck, Bower, &
Hee, 1989). Although most connectionists would deny
the charge that they are the ‘neo-Behaviorists® of psycho-
logical modelling, many seem to adhere to one of the
most central, and most problematic, assumptions of
Behaviorist psychology: that leaming mechanisms can
be studied without regard to their specific adaptive func-
tions for the particular species investigated. The very no-
tion of using an ‘animal model’ (e.g. a rat or pigeon) to
investigate human learning assumes the existence of
cross-species universal learning principles which, on evo-
lutionary grounds, we may have little reason to expect.
We would argue, to the contrary, that in pursuing the first
approach to the study of adaptive agency outlined above,

65

66

Miller and Todd

(1) connectionists interested in modelling portions of hu-
man or animal minds should atiempt to model real
domain-specific psychological adaptations (the natural
building blocks of minds -- see Cosmides & Tooby,
1987) rather than other units of analysis; (2) connection-
ists interested in modelling domain-specific psychologi
cal adaptations should explore whether, when, and how
specific learning mechanisms might be used by those
adaptations, rather than simply assuming the adaptive
utility of some hypothesized general-purpose leaming
mechanism. On the other band, if one is interested in
pursuing the third approach to the study of adaptive agen-
cy, we would suggest that (3) connectionists can usefully
eaplore the general features of adaptive agency by study-
ing how adaptive processes themselves work and in-
teract, without reference to specific psychological adapta-
tions in a particular species. Point 3 seems to conflict
with points 1 and 2 because it suggests a less domain-
specific, species-specific methodological focus. But just
as one can do theoretical astrophysics without construct-
ing specific astronomical models of particular observable
celestial bodies, one can explore the dynamics of adap-
tive processes in general without modelling their specific
structural outcomes in the minds and behavioral reper-
toires of particular species.

Our empirical research concentrates on poini 3, because
we are currently more interested in how adaptive
processes interact than in the particular adaptations those
processes happen to have produced on this plane. at this
time. This paper lays out the theoretical framework and
methodological principles guiding our work 1n exploring
adaptive agency. Elsewhere (Todd & Miller, 1990), we
describe in more detail the specific methods and results
obtained in simulating the evolution of associative learn-
ing as a mechanism for ‘imprinting’ on certain features of
one's evolutionary niche; and in a forthcoming paper
(Todd & Miller, in press), we exiend this simulation
method to understanding habituation and sensitization
mechanisms as evolutionary adaptations for behaviorally
tracking short-term environmental dynamics.

2 NATURAL SELECTION AND THE
EVOLUTION OF SUBSIDIARY ADAP-
TIVE PROCESSES

Evolution as an adaptive process has itself undergone
changes: "survival of the stable” probably preceded "sur-
vival of the fittest” (Dawkins, 1976). Evolution in the
earth’s early environment is likely to have sclected for
physical systems (e.g. autocatalytic sets) with relauve
stability in the simmering primordial soup. Afier stability
came replication and metabolism. the ability to turn
external material into copies and extensions of oneself.
Simple physical systems thus evolved into replicating
systems, Larger, more complex phenotypes probably
evolved to protect the replicators against biochemical
breakdown and facilitate their intake of materials for re-

plication and metabolism. These larger phenotypes set
the stage for the evolution of behavior-generating sys-
tems that could produce innately programmed sequences
of activity and movement. (In the land of the sessile, the
blind, roving, pre-programmed predator may be king.)
Sensory sysiems could then evolve to guide these
behavior-generators more adaptively, based on sensitivity
to particular environmental cues. (In the land of the
blind, the optic-spotted paramecium may be king.) Thus,
blind activity may have preceded reactivity -- behavioral
adaptation to the current changing environment on a
moment-by-moment basis.

Only after these first two adaptive processes (natural
selection with a genotype/phenotype distinction, and
behavioral reactivity) had emerged could a third evolve --
‘learning,’ defined as the ability to make long(ish)-term
adaptive changes in evolved behavior-generators in
response to particular environmental conditions and
dynamics.” (See Shepard, 1987a, 1989, for discussion of
these adaptive processes in relation to psychology and
connectionist modelling). In this hierarchy, learning em-
erges not as the primary adaptive force that some theor-
ists (e.g. Behaviorists) have assumed it to be, but rather
as a tertiary one, following long-term genotypic evolution
and short-term environmental reactivity. Once we re-
conceptualize ‘learning’ as merely one process among
several that help generate and support adaptive agency,
the questions we might ask about this process begin to
change as well.

Traditionally, researchers using simulation to explore
adaptive agency have started by assuming learning as a
primary adaptive process, and then asked how evolution
might shape and be shaped bLy learning. For example,
Hinton and Nowlan (1987) and Belew (1990) explicate
the Baldwin effect in which learning "guides" evolution;
Stork and Keesing (1990) and Belew, McInemey, and
Schraudolph (1990) investigate how evolution and learn-
ing can combine to affect the initial structure of neural
networks. But considering the hierarchy of adaptive
processes spelled out above, the question we want 10 ask
is, rather, given the already-powerful adaptive processes
of genotypic evolution and environmental reactivity,
under what conditions would the tertiary adaptive process
of learning ever prove useful in terms of increasing indi-
vidual fitness? Assuming no learning, when should
leaning evolve? We consider learming a mystery to be
explained rather than a commonsense explanaton for
other phenomena.

Fortunately, connectionists are not the first group to grap-
ple with these thomy issues. The history of learning
theory in comparative psychology has considered such
problems for over a century, and is slowly arriving at a

! By this definition, learning includes such processes as expenence-
guided development not commonly included in this category -- see,
¢ g, Singer, 1988 We discuss this 1ssue further in section 5.

Exploring Adaptive Agency I: Theory and Methods for Simulating the Evolution of Learning

theoretical consensus that we can take, almost off the
shelf, to guide our modelling and simulation efforts. Ig-
norance of this intellectual heritage may not preclude
success, but knowledge of it should help. Connectionists
can, at least, hope to avoid recapitulating the pitfalls of
certain historical ways of thinking about learning,

3 ABRIEF HISTORY OF LEARNING
THEORY IN (COMPARATIVE)
PSYCHOLOGY

Aithough the earliest comparative psychologists recog-
nized learning mechanisms as evolutionary adaptations,
the rise of general process learning theory in Behavior-
ism effectively obliterated consideration of the adaptive
functions of learning. With the accumulation of empiri-
cal results indicating biological ‘constraints’ on leaming
and theoretical arguments for the necessity of innate
structure for learning, general process leamning theory
was gradually abandoned. Yet only recently has an alter-
native model, ccological learning theory, emerged, to re-
store emphasis on the adaptive functions of learning.

3.1 EVOLUTIONARY COMPARATIVE
PSYCHOLOGY BEFORE BEHAVIORISM

Few modem leaming theorists are aware of how
evolutionary-minded the earliest comparative psychology
was (sec Boakes, 1984). Darwin was well-versed in as-
sociationist learning theory; Pavlov concerned himself
with the adaptive functions of leamning when to salivate
(Garci y Robertson & Garcia, 1988). Kline (1898), Small
(1900), and even the early Thorndike (1911) and Watson
(1919) recognized the importance of animals’ intrinsic
organization for learning. However, these early attempts
10 understand learning as an evolutionary adaptation were
derailed by the commitment of Romanes and other com-
parative psychologists to Lamarckian inheritance of
learned abilities and to a phylogenetic continuity of mind
from simpler to more complex organisms that was taken
proximally from Spencer’s (1855) Principles of Psychol-
ogy but derived ultimately from Aristotle’s ‘Great Chain
of Being’. Thomdike (1898) correctly rejected both of
these doctrines, and "viewed the work of his predeces-
sors, studying lcarning within an evolutionary frame-
work, as unmitigated failure” (Galef, 1988, p. 55). Un-
fortunately, T ‘ike appears to have been unaware of
attempts b_ 1, Osbom, and Morgan to propose al-
ternative concel. «ns of evolution, inheritance, and lcarn-
ing that might have served as a better foundation for an
evolutionary comparative psychology of learning. In re-
jecting evolutionary thinking, Behaviorists believed they
no longer had to consider the specific niches and adaptive
problems facing cach species, and their doctrines of equi-
potentiality (equality of all stimuli and responses with
respect to their associability) and of the cross-specics
universality of leaming principles gained temporary he-
gemony.

3.2 BEHAVIORIST LEARNING THEORY

The emerging Behaviorist paradigm viewed learning as a
general mechanism for crafting behavioral order out of
initial neurological chaos. Morgan (1896) wrote of learn-
ing as sculpting directed activity out of initially random
movements; Hull (1943) viewed infants as bundles of
reflexes generating random movements that slowly get
tuned by conditioning to yicld adaptive behavior; Skinner
(1953) viewed learning as the differential reinforcement
of initially undifferentiated behavior. (Parallels to con-
nectionist learning theory should be obvious.) Empiri-
cism, which was initially a theory of knowledge, became
first a theory of perception, and then, only with the rise of
Behaviorism, a theory of behavior (Bolles, 1988). No
one actually believed animals’ minds started as tabule
rasae in Aristotle’s strict empiricist sense, but most
Behaviorists held that a few basic reflexes and motiva-
tions, in conjunction with the ability to form conditioned
stimulus-response associations, sufficed to explain all
behavior. Species differences in niche and lifestyle were
ignored (e.g. Thorndike, 1911). The simple, almost
‘atomic’ stimulus-response bond was taken as the basic
unit of behavioral analysis in an attempt to emulate the
theoretical style of physics and make psychology into a
"purely objective experimental branch of natural science”
(Watson, 1914/1967, p. 1) Behaviorism’s central features
(as compiled by Davey, 1989) were the principle of in-
strumental reinforcement (with ‘reinforcement’ defined
circularly -- see Meehl, 1950), the principle cf stimulus
generalization (theoretically impossible without innate
structure -- see Shepard, 1987a,b), temporal contiguity as
the prime determinate of association strength (demonstr-
ably false -- see Rescorla & Wagner, 1972), and the equi-
potentiality of stimuli and responses (also demonstrably
false -- see the next section).

3.3 EMPIRICAL RECOGNITION OF ‘BIOLOGI-
CAL CONSTRAINTS’ ON LEARNING

Some disenchantment with Behaviorist leaming theory
came from psychohinguisuc studies of human language
acquisition (e.g. Chomsky, 1957), and from ethological
studies of learning in natural settings, which focused on
ife-cycle pattemns of leamning, the plasticity of natural
behavior, and the dynamics of natural patterns in real en-
vironments (¢.g. Lorenz, 1937; Tinbergen, 1951), How-
ever, the strongest challenges to general process learning
theory came from within the Behaviorist tradition of an-
imal learming studies itself. In the 1960's and 1970’s, a
growing number of studies demonstrated biological
‘predispositions’ and “‘constraints’ in leaming, which
challenged the Behavionist doctrines of equipotentiality
and the umiversality of leamning principles across specics.
Seligman & Hager (1972) and Hinde (1973) review this
Iiterature, which includes demonstrauions of conditioned
food aversion that violates the pninciple of contiguity
(e.g. Garcia & Koelling, 1966), ammal ‘misv2havior’ and
‘instinctive drift’, where instinctive behaviors eventually

67

68

Miller and Todd

dominate operantly-conditioned behaviors (e.g. Breland
& Breland, 1961); autoshaping, where animals perfect
skills without reinforcement (e.g. Williams & Williams,
1969); spontaneous maze leaming in rats (Brant & Ka-
vanau, 1965); reward-specific association biases (Jenkins,
1984); species-specific defense reactions (Bolles, 1970,
Bolles & Fanselow, 1980); animal’s superiority at learn-
ing natural over artificial concepts (Hernstein, 1979),
preparedness in human phobia lecaming (Ohman, Dim-
berg, Ost, 1985); and imprinting to parents (Lorenz,
1952), enemies (Curio & Vieth, 1978), and potential
mates (Marler, 1984). In addition, Bebaviorists were be-
ginning to recognize that, although they explicitly defined
learning in terms of experimental paradigms, they too
often were defining it implicitly in terms of highly
artificial Iab equipment tailored to the constraints and
predispositions of each ‘animal model’ species (Timber-
lake, 1989) There were “tricks’ to conditioning and shap-
ing (i.e. in selectivel, avoiding species-typical behaviors)
and to setting up lab situations to overcome or circum-
vent the mechanisms actually used in complex natural
learning (Shettleworth, 1984).

Although the empirical proof of biological ‘constraints’
on learning was overwhelming by the mid-1970’s, animal
learning theorists simply didn’t know what to make of
these ‘anomalies’. The burden of proof was always
against species-specific, domain-specific adaptive leam-
ing mechanisms, and for completely general leaming
principles (Revusky, 1977). But Shettleworth (1984) ob-
served that, from an evolutionary point of view, this bias
was absurd, since selective association makes leaming
more adaptive than it otherwise would be. The burden of
proof should, evolutionarily, be against domain-
generality and against cross-specics universality.

Constemnation and confusion accumulated m the animal
learning literature, threatening the hegemony of
Behaviorist doctrine. Cognitive psychology (which had
rejected Behaviorism's philosophy of science and
methods of research even as 1t retained Behavionism’s
doctrine of equipotentiality and anti-cvoluticnary bias)
responded by walling itself off from animal lcaming
theory. Where cognitive psychology couid not 1gnore the
infiltration of biological ‘constrainis’ into amimal leaming
research, at least it could {and did) contain the damage by
maintaining human memory and learning as a scparate,
pristine field: “the prevailing view of human learning 1s
[still] that it is almost wholly gencral-purpose in charac-
ter and can be understood without reference to biological
or ecological considerations” (Estes, 1984, p. 626).

34 THEORETICAL RECOGNITION OF THE
NEED FOR ‘BICLOGICAL CONSTRAINTS’

In faimess, there was some recognition in human cogni-
tive psychology of the need for intrinsic structure to
guide learning. Following on Kant’s attempt to solve
Hume’s problem of infermng causality from temporal

suvcession, Michotte (1954) explored the mind’s inherent
tendencies to organize perceptual experieaces n terms of
causal relations. Chomsky (1957) argued hat ntrinsic
structure (e.g. a ‘Language Acquisition Device’) was
necessary for leaming grammar given the supposed pau-
city of linguistic input to children. Shcpard (1987a,b)
maintained that any cognitive system that lacks innate
structure in the ‘psychological spaces’ in which it organ-
izes perceptual experiences would have no basis for gen-
cralizing adaptively to new situations. In general, "non-
trivial self-programming can take place only if sufficicnt
knowledge about the world in which the system is to
leamn is already built into the system” (Shepard, 1989, p.
106). Further, lcaming principles do not emerge directly
from the dynamics of replicating systems in the way the
principles of natural selection do. Learning is not a self-
organizing adaptive process as evolution is: "the princi-
ples that govern learning cannot themselves be learned”
(Shepard, 1989, p. 106). Of course, arguments for innate
constraints were never very surprising to evolutionary
biologists. Emlen (1973), for instance, argued that postu-
lating learning without genetic guidance means postulat-
ing the evolution of a mechanism that would allow an an-
imal to arbitrarily change its phenotype without regard to
its fitness consequences -- an evolutionary implausibility.

3.5 FROM BIOLOGICAL CONSTRAINTS TO
ECOLOGICAL LEARNING THEORY

The accumulation of theoretical arguments and experi-
mental evidence for biological ‘constraints’ in amimal
learning did not result in the rapid overthrow of general
process learning theories, largely because there was not,
until recently, an alternative theoretical framework for
understanding leaming. Describing selective associations
and species-specific or domain-specific learning mechan-
isms in terms of ‘predispositions’ and ‘constraints’ in it-
self reveals the continuation of a general process view of
learning. Constraints could be seen as anomalous biolog-
ical intrusions on an otherwise normative tabula rasa
(Sheuleworth, 1984): "the implications of the term
{‘constraints’] ... is that animals would be smart if their
genes did not constrain their general ability to learn and
thereby make them selectively stupid" (Gould & Marler,
1984, p. 254). Timberlake (1989) suggests that predispo-
sitions and constraints are evolutionary outcomes to be
explained, not explanations in themselves for failures of
general process learning theory, and Revusky (1977)
holds that viewing lcarning in terms of constraints is
mislcading in that it has fostered blindly empirical inves-
tigations of limits on general process learning theory in
ignorance of relevant ethological information about an-
imals’ niches and behavior,

Research on biological constraints became a simple cata-
log of anomalics and puzzles without integrative or
predictive power, and did not lead to development of a
contemporary integraied theory of lcaming (Davey,
1989). As Cosmides and Tooby (1987) point out, almost

Exploring Adaptive Agency I: Theory and Methods for Simulating the Evoluticn of Learning

any complex adaptation can be viewed in terms of ‘con-
straints’ (e.g. a bird’s wings ‘constrain’ its ability to
swim), but raost adaptations are better understood as
‘enablers’ (e.g. a bird’s wings do enable it to fly). More-
over, the atten.pt to view constraints as biological boun-
dary conditions on general laws (e.g. Logue, 1979) has
not proved fruitul, nor can selective association be ac-
commodated in general process learning theory by ad-
ding more paramazters, €.g. a scalar ‘preparedness’ value
for every possible stimulus-response association (scc
Seligman, 1970).

Biological constraints research eventually crippled gen-
eral process leamning theory, but left a huge theoretical
gap. Only recently has ecological leaming theory
(Davey, 1989) risen to take its place. Ecological leaming
theory’s strategy is to start, like all adaptationist accounts
in evolutionary biology and behavioral ecology, wilh
consideration of what adaptive functions might be served
by the biological structure or process in question -- in this
case, the processes of learning. In this view, leaming
theory must be linked to a consideration 0. adaplive
pressures bearing on the evolution of leat.a.. mechan-
isms, and of the phylogenetic resources {e.g. ‘pre-
adaptations’) available for constructing learning mechan-
isms (Timberlake, 1989). Just as evolution does not
‘build down’ bodies or organs from more general-
purpose desigr.s, evolution would not be expected to
somehow ‘ccnstrain’ general-purpose learning princigies.
We might raher expect evolution to generate specific
learning meclanisms attuned to particular ecological
problems. Among the central tenets of ecological leamn-
ing theory are. recognizing leamning mechanisms as evo-
Iutionary adapiations (Dawkins, 1983; Shettleworth,
1983); recognizing the possible biological utility of learn-
ing (Kamil & Roitblat, 1985; Lea, 1984); considering the
ecological problems facing organisms, (Plotkin &
Odling-Smee, 1979); attending to relevant ethological in-
formation (Johnston, 1981a); taking an evolutionary view
of reinforcement (Vaccarino & Glickman, 1989); appre-
ciating that animals are often rather specifically adapted
to their niche (Slobodkin & Rapoport, 1974); and under-
standing the evolution of leaming in the context of
already-functioning behavioral systems (Mayr, 1974).

3.6 TOWARDS UNDERSTANDING THE ADAP-
TIVE FUNCTIONS OF LEARNING

An evolutionary and ecological perspecuve on learming
gives rise to very different questions, not only about the
proximate mechanisms of leamning (what the Behavionsts
invesugated almost exclusively), but about the ulumate
adapuve functions of different learning mechanisms. For
example, Davey (1989, p. xiv) asks "What is the bivlogi-
cal function of learming? How does it comuibute 10 m-
clusive fitness? What selection pressures bear on the
evolution of learning processes? Could generalized learn-
ing processes ever be selected for? Have basic leaming
processes cvolved scparately in different species?”

Questions of adaptive functions (‘why?") have logical
priority over analyses of proximate mechanisms (‘what?’
and ‘how?’) for any evolved biological system (Davey,
1989), but adaptive mechanisms and adaptive functions
do illuminate each other. Analyses of proximate leamning
mechanisms alone cannot constitute a complete psycho-
logical learning theory: "The common belief that ‘leam-
ing’ is an alternative to an evolutionary theory of adap-
tive function is a category error. Learning is a cognitive
process. An adaptive function is not a cognitive process.
It is a problem that is solved by a cognitive process”
(Cosmides & Tooby, 1987, p. 292). The guiding ques-
tion in ecological learning theory thus becomes “what
kind of learning mechanisms would natural selection
have produced?” (ibid.).

Ecological leaming theory suggests that we answer this
question first by considering what specific kinds of eco-
logical problems might be solved by the evolution of
leaming mechanisms. Among the central problems fac-
ing terrestrial organisms are finding food, finding mates,
allocating reproductive effort, caring for offspring and
kin, avoiding predators and parasites, and navigating
through the environment. We might expect learning
mechanisms to be organized around these adaptive prob-
1-.ns :n the context of behavioral systems (Timberlake,
1989), Darwinian algorithms (Cosmides & Tooby,
1987), or psychological adaptations (our preferred term),
cach containing cognitive, motivational, emotional, voli-
tional, learning, and memory components. For example,
leamning has been investigated specifically as an aid to
foraging behavior (e.g. Lea, 1984; Staddon, 1980).
These considerations support points (1) and (2) advocat-
ed in section 1.

4 HOW ECOLOGICAL LEARNING
THEORY CAN INFORM CONNEC-
TIONIST LEARNING THEORY

Behaviorists attempted to see how much of real human
and ammal behavior they could explain just by reference
to general principles of learning nteracting with environ-
mental contingencies and conditioning paradigms. Con-
nectionists all too often attempt to see how much of hu-
man mental life can be explained just by reference to
general principles of learning interacting with the ‘statist-
ical regularities of the environment’. Arguments from
parsimony can bc dangerous. The history «f learning
theory in comparative psychology indicates that in both
Behaviorism and Connectionism the burden of proof
against evolved psychological adaptations has been mis-
placed. Evolutionary considerations suggest that we
should reverse this traditional burden of proof and as-
sume that most psychological adaptations will include ci-
ther no leaming mechanisms, or very fincly-tuned leam-
ing mechanisms with quite specific functions, ¢.g. to pro-
mote experience-sensitive development of behavior-
gencerators, to track changes in body shape and size, to al-

69

70

Miller and Todd

low spatio-temporal integration of certain kinds of infor-
mation (i.e. ‘memory’), or possibly to track certain en-
vironmental dynamics. Learning is a subsidiary rather
than an autonomous adaptive process, because leaming
mechanisms evolve to serve particular adaptive funcuons
defined in ecological and evolutionary terms. Ecological
learning theory suggests, then, that connectionist learning
theory per se cannot serve as the core theoretical frame-
work for connectionist modelling of psychological adap-
tations. Only evolutionary psychology (Cosmudes &
Tooby, 1987), appropriately extended and modified, can
fill that role.

41 ECOLOGICAL LEARNING THEORY, CON-
NECTIONISM, AND EVOLUTIONARY
PSYCHOLOGY: A HAPPY RECONCILIA-
TION?

Evolution, leaming, and computation can all be construed
as adaptive processes (Holland, 1975). Connectionism
has concentrated almost exclusively on the adaptive
processes of learning and computation, but perhaps evo-
lution could be added in as just another process at a
longer time scale. This would result in a tidy kind of
‘evolutionary connectionism® where every connectionist
model of a human psychological adaptation would con-
sider three adaptive processes at different time scales (as
outlined by Shepard, 1989). First, at the shoriest time
scale, computation would allow the connectionist system
to adjust its internal representations and overt responses
to the requirements of the current environment, e.g. by
perceptual completion, interpretation, categorizauon,
prediction, and inference. An activation dynamics equa-
tion governs the network’s relaxation in state space to
fulfill the hard and soft constraints set by the current en-
vironmental input. Second, at an intermediate ime scale,
learning processes would adjust connection weights and
biases, perhaps by gradient descent in weight space ac-
cording to some connection dynamics equation, €.g. error
back-propagation. Thir¢ at the longest time scale, a
simulated process of natural selection (e.g. a genetic al-
gorithm) could evolve network designs by performing a
stochastic search through an architecture space (e.g. Mill-
er, Todd, & Hegde, 1989; Belew, 1990; Belew, Mclner-
ney, & Schraudolph, 1690). In the limit, we could simply
‘evolve’ connectionist models of psychological mechan-
isms in an abstract ‘econiche’ composed of experimental
results and theoretical heuristics which the models should
fit. Alternatively, consideration of the adaptive tasks that
certain psychological adaptations might have been
designed to solve evolutionarily could help guide modecl-
ling of those adaptations by human psychologists. Ac-
cording to this view, if we make our computational tasks
just a litle more ecologically valid, and our leaming
processes a little more biologically plausible, we'll have
a flexible, powerful paradigm that updates conncctionist
modelling to fit better with ecological leaming theory
(Davey, 1989) and with the emerging ficld of evolution-

ary psychology (Cosmides & Tooby, 1987).

42 TURNING THE TABLES ON LEARNING

By prematurely adopting the sort of ‘evolutionary con-
nectionism’ outlined above, however, we may be missing
a valuable opportunity for re-conceptualizing learning it-
self. Evolutionary theory has traditionally been dominat-
ed by learning theory in psychology; what would happen
if we momentarily inverted this dominance relation and
asked: given the already powerful adaptive process of
evolution by natural selection, what could learning really
add?

Johnston (1981b) analyzed the relative costs and benefits
of leamning from an evolutionary perspective, and con-
cluded that learning is not always an adaptive thing to
have. Fitness costs of learning may include longer infan-
cy and adolescence, with delayed reproductive maturity
(as Staddon, 1983, p. 1, observes, it is "sometimes better
to be dumb and fast than intelligent and slow"), increased
juvenile vulnerability during leamning, increased parental
investment during leamning, the neural ‘bookkeeping’
cost associated with memory storage and the possibly
greater connection complexity and density required for
leaming, and, perhaps most importantly, the developmen-
1al fallibility of learning: "the importance of not leamning
maladaptively is underestimated” (Shettleworth, 1984, p.
448) In particular, not learning the wrong things at all
may be more imporntant than learning the right things
quickly (Revusky, 1984). Proposed benefits of leamning
include being able to adapt to changes and fluctuations in
the environment, particularly when the environment may
change unpredictably during the animal’s lifetime (Slo-
bodkin & Rapaport, 1974; Plotkin & Odling-Smee,
1979), and being able to exploit new niches when re-
quired (Davey, 1989).

All adaptive costs and benefits must be understood rela-
tive to evolutionarily available altemauves. There may
be no a priori need for leaming to evolve if other psycho-
logical mechanisms suffice to generate adaptive behavior.
Why insert an intermediate adapuve process (leaming)
between the evolution of psychological adaptauons and
the online functioning of those adaptations in generating
behavior contingent on current environmental mput?
Hardwiring may suffice. Descartes (1662/1972), for ex-
ample, ignored learning and viewed all animal behavior
as reflexive responses to current environmental events.
Davey (1989, p. xiii) observed "it 1s surprising how rela-
tively few species have abandoned fixed behavioral pat-
terns in favor of learning abihties” , and Mayr (1974, p.
652) noted "considering this great [supposed] advantage
of lcarning [i.c. adaptability to changing environments], it
is rather curious in how relatively few phyletic hnes
genetically fixed behavior patterns have been replaced by
the capacity for the storage of individually acquired m-
formation".

Exploring Adaptive Agency I: Theory and Methods for Simulating the Evolution of Learning

The prevalence of hardwiring among temrestrial organ-
isms has several explanations, Staddon (1983, p. 1) sug-
gests "direct stimulus-response mechanisms, plus some
sensitivity to rates of change, are sufficient for a wide
range of surprisingly intelligent behavior" (see also
Braitenberg, 1984). This is particularly true for smali,
fast-breeding organisms, whose short generation time fa-
cilitates rapid evolutionary change in response to en-
vironmental change and limits how much time they have
to exploit leamed information during their lifespan.
Staddon (1983, p. 395) also remarks "the longer an
animal’s life span, and the more varied its niche, the
more worthwhile it is to spend time learning”. He goes
on to note that, given most animals have rather short life
spans, "It is not surprising, therefore, that learning pays a
rather small part in the lives of most animals" (ibid.).
Moreover, "animals in invariant environments can rely
on equally invariant patterns of behavior" (Mackintosh,
1987, p. 336).

Some science seeks to reduce the strange to the familiar;
our goal in this section has been the reverse. We sought
in turning the tables on learning to make an apparently
commonsense adaptive process seem strange and prob-
lematic from an evolutionary point of view. Perhaps by
tuming up the heat of evolutionary theory on the caul-
dron of learmning theory, we can perform the kind of
theoretical annealing that has been so successful in other
areas of adaptationist biology. One of the hottest ques-
tions to ask becomes, not why have any biological con-
straints on learning evolved, but why isn’t all initially
‘learned’ behavior canalized into genetically hardwired
psychological adaptations? What can a few years of
learning really buy a cognitive system already fine-tuned
by millenia of natural selection? Whereas connectionists
have taken learning as the ultimate adaptive process, real
evolving organisms always have an alternative: hardwire
the knowledge.

5 TOWARDS A TAXONOMY OF ADAP-
TIVE FUNCTIONS FOR LEARNING

The most salient aspect of leaming to Behaviorists was
its dynamic ability to bring organismic behavior into a
better fit with the current conditions of the environment,
Leaming was, quite intuitively, assumed to have a kind
of environment-tracking function, It was a way for or-
ganisms to adapt to environmental changes faster than
evolution could. This view carries over into many recent
Justifications of leamning as an adaptive adjunct to natural
selection (e.g. Belew, 1990). But we still wondered why
an organism would evolve to allow environmental condi-
uons to change how its behavior-gencrating mechanisms
work (by ‘learing’), rather than allowing natural selec-
tion to optimize those mechanisms (by ‘hardwiring’) just
as its has oplimized so many other physical adaplations
(see Mayr, 1974; Staddon, 1983; Menzel, 1984)? How
can we clarify and extend these intuitions about the evo-

lution of learning?

We see three main adaptive functions for learning. First,
and perhaps most importantly, ‘learning® may serve to in-
crease an organism'’s ‘developmental leverage’, allowing
it to build a larger, more complex, more finely organized
phenotype than it otherwise could, given a certain size
genotype. Sensitivity to certain predictable environmen-
tal regularities during neural development, and the result-
ing sensory activation patterns, could guide the self-
organization of an animal’s behavior-generating mechan-
isms (e.g. see Singer, 1988). Leamning may allow the
genotype to ‘store information in the environment’ and
let environmental regularities do much of the hard work
of wiring up adaptive behavior-generators.? The environ-
mental regularities used in this way may take a rather
abstract form. For example, parental ‘imprinting’ in
birds (Lorenz, 1937) can be viewed as a way of building
a behavior-generator sensitive to the appearance of one’s
parent, based on the following environmental regularity:
the first large moving thing one sees after hatching is
very likely one’s parent. Of course, the particular
behavior-generator constructed by different birds for
recognizing their parents will be different (the birds will
‘learn’ different parental images), but the species as a
whole relies on the same environmental regularity when
doing the construction.

Second, ‘learning’ construed as ‘memory encoding’ can
assist in the spatio-temporal integration of environmental
information. Behavior-generators guided only by en-
vironmental cues in the here and now may be inferior to
behavior-generators sensitive the relevant environmental
cues from the distant and past.” Animals may evolve to
construct the functional equivalent of variable-delay
neural delay lines (i.e. ‘episodic memories’) from certain
sensory systems to certain behavior-generators, to expand
the temporal scope of their sensitivity to environmental
cues. That is, they may evolve to be able to ‘bring to
mind’ information they recruited in the past that is not
currently available in the environment. For mobile an-
imals, broadened temporal sensitivity can translate into
broadened spatial seasitivity as the animal moves about
and recruits environmental information. (Constructing a

* There have been many demonstrations that experimentally depriv-
ing developing nervous systems of certain environmental regulari-
ues (c.g. certain kinds of visual sumulation) results in maladaptively
orgamzed topographic maps (c.g. 1n stnatc visual cortex -- see Hubel
& Wiescl, 1965, Wiesel & Hubel, 1965) Such experiments should
not be construcd as demonstrations of the imposence of genetic pro-
gramming and the importance of ‘cxperience’ and *leaming’, but of
how efficient evolved developmental mechanisms are at recruiung
cnvironmental regulanues to assist in self-orgamzation. The fact
that ncurologists can selecvely eliminate those regularitics in la
buratones should not make us doutk their reliability and ubiquity in
nature.

} However, Gibson (1966, 1979) and Johansson, von Hofsten, and
Jansson (1980) wam against underesumaung the informationai nch-
ness of the present, proximal cavironment, or underesumating the
range of adaptive behavior that it can guide

71

72 Miller and Todd

‘mental map’ of one's environment from expericnce
gathered during sequential exploration is a paradigmatic
example of using ‘learning’ to integrate information
across space and time.) This function of learning neither
constructs behavior-generators (function 1 above) nor
modifies their online functioning (function 3 below), but
simply expands the range of environmental information
to which they are sensitive,

Third, as suggested carlier, ‘learning’ may allow organ-
isms to adjust the online functioning of their behavior-
generators faster than natural selection would allow, by
conferring on those behavior-generators some senstivity
to dynamic changes in environmeneal conditions during
an organism’s life. In this case, learning adapts pheno-
types to ongoing changes and particularities of the en-
vironment rather than depending on environmental regu-
larities during phenotype-construction. For example, an-
imals equipped with a special mechanism for leaming
motor skills to remove new varieties of parasites from
their bodies may fare better than competitors lacking
such a mechanism if a new species of parasite migrates to
the area. Different parasites may have different modes of
attachment to the animals’ bodies, so may require dif-
ferent removal methods. A leaming mechanism that al-
lowed an animal to infer, practice, and perfect an ap-
propriate removal method given, e.g., a visual assessment
of the parasite’s attachment method, might prove adap-
tive. In this case, the animals would not be using an en-
vironmental regularity to construct a behavior-generator
during development (the new parasites weren’t around
then), or integrating information about the parasites
across space and time (parasites currently attached to the
animals’ bodies are very much in the here and now), they
are simply developing a new behavior-generator (e.g. a
new method of parasite removal) adapted to a new en-
vironmental problem.

This proposed cnvironment-tracking function includes
many sub-functions not usually considered in leaming
theory. One reason for modifying the operation of
behavior-generators during the lifetime of an animal is
that the animal’s body may be growing and changing --
ie the spatial relations among its sensory transducers
and motor effectors, and between those and its surround-
ing environment, may be changing. Certain lcaming
mechanisms may evolve to track such relations between
the animal’s gradually changing body and relatively
stable aspects of the environment, rather than tracking
‘objective’ environmental dynamics per sc. Another way
of expressing this would be to say learning tracks not just
the external environment, but also the corporeal environ-
ment of bone, sinew, and flesh in which the animal’s
behavior-generators (i.e. brains) arc embedded.

A second reason for modifying the operauon of
behavior-generators in response o cerlain environmental
conditions is that animals may need to track changes not
only in their individual bodies (their basic phenotypes)

but in their ‘extended phenotypes’ (Dawkins, 1982), in-
cluding the location, health, and reproducuve status of
their kin and offspring. Animals may be able to rely on
relatively fixed developmental sequences and internal
clocks to modify the operation of their behavior-
generators as they grow and age. But to track the whole
of their extended phenotype, they need to actually ob-
serve when other copies of their genes are being instan-
tiated (i.e. when kin and offspring are born), when those
copies are gaining access to metabolic and genetic
resources (i.e. growing, eating, and mating), and when
they are being threatened (i.e. injured or dying). Animals
may evolve learning mechanisms that permit acquisition
and maintenance of an ongoing cognitive model of one’s
kin and social-exchange network, including how to
recognize and assist them, and how to request assistance
of them. Many leaming mechanisms may be rather
specifically tuned to promote this type of kin recognition
and kin sclection (see Hamilton, 1964).

Such complexities aside, environment-tracking is prob-
ably the adaptive function of leaming most familiar to
adult humans (e.g. learning a new restaurant location, or
a new person’s name), so it has been more commonly
studicd by psychologists. Yet it is likely to be a less
common use of Ileaming than experience-guided
phenotype-construction throughout the animal kingdom.
Several issues of scale in time and space arise in consid-
ering the adaptive functions of learning; these can il-
luminate why experience-guided development may be
more widespread than environment-tracking leamning.
We might expect small and large organisms to use
expericnce-guided development to almost the same ex-
tent, i.¢. as much as possible. Big animals, by definition,
must build large and often incredibly complex pheno-
types given moderately sized genotypes. Although small
animals do not have as much of a phenotype to build,
they must build their phenotypes from very small
gametes that contain very little genetic material.

However, larger phenotypes generally take longer to
build, implying longer gencration time and a slower rate
of genetic cvolution (the greater extincuion rate of large
species is generally thought attributable to their difficulty
in genctically adapting to changing environments). Thus,
larger phenotypes will generally have a harder time
tracking e.vironmental change, and their genotypes will
generally lag farther behind being adapted to the current
cnvironment, so in general there may be unusually strong
adaptive pressures for larger amimals to cvolve
cnvironment-tracking lcaming mechamsms. The sah-
ence of these adaptive pressures to humans, one of the
larger and longer-lived species on the planet, may lead us
to overestimate the importance and populanty of
environment-tracking learning. But, as Davey (1989, p.
20) suggests, "leamning ... is likely to evolve only when
more fundamental processes of information gain (such as
phylogenesis [i.e. evolution]) have reached an upper limit
to the amount or rate of change that they can cope with”.

Exploring Adaptive Agency I: Theory and Methods for Simulating the Evolution of Learning

Thus, we needn't suppose that small animals lack
environment-tracking learning abilities because they are
‘less advanced’ than larger animals. We must sec ‘learn-
ing’ as (1) as way of developmentally fleshing out the
genotype during development, (2) informationally flesh-
ing out the animal’s current Umwelt (view of the world)
over space and time, and (3) temporally filling in the
adaptive furction of environment-tracking in between
generation times, when natural selection operates. Small,
fast-lived organisms simply don’t need much of the third
function. Since small-bodied species as collective enti-
ties out-number, out-weigh, out-reproduce, and typically
out-last large-bodied species, they objectively instantiate
most of the adaptive agency on this planet. The adaptive
functions of learning that are central to them must be
considered central to psychology as the (non-
anthropocentric) study of adaptive agcm:y.4

6 A SIMULATION FRAMEWORK FOR
EXPLORING ADAPTIVE AGENCY

A general understanding of adaptive agency cannot rest
on experimentation, observation, and theory alone. Some
adaptive processes happen on time-scales that preclude
experimental manipulation or direct observation. Also,
the canalization of terrestnial evolution along certan lines
(e.g. using DNA for genotype material) makes us wonder
about alternative possibilitics not directly observable.
And the stochastic, complex nature of adaptive processes
make strict experimental control of real physical systems
very difficult. For these reasons, researchers have recent-
ly turned to computer simulation as the most tractable
way of exploring certain adaptive processes. Simulation
allows strict control over specified parameters, explora-
tion of alternate phylogenies and developments, and rapid
observation of processes that take eons in the real world.
Simulation bears on psychology not only as a method for
modelling specific psychological adaptations and specific
historical phylogenies, but as a way of generally cxplor-
ing the adaptive processes that produced those phylo-

* The supgested logical and histoncal pnmacy of expenence-
dependent development over environment-tracking leamning is a
conjecture not easily supported or refuted. It is appealing 10 us be-
cause leaming mechanisms that evolved originally for experience-
guided development of behavior-generators could conceivably serve
as pre-adaptations for the evolulion of environment tracking leam

ing. Thatis, given a leaming mechanism that recruits patems of en

vironmental stimulation to help in construction of a psychological
adaptation, one could easily imagine how prolongaton of that
mechamsm's sensiuve penod could confer longer, perhaps hifelong,
adapuve flexability to that mechamism. Sclecuve pressures to pro-
long such sensitive periods, we conjecture, may underlie the evolu

tion of most environment-tracking leaming mechanisms. Johnston
(1981) discusscs how potentially adaptive concommitants of
cvolved leaming abihiies might serve as pre-adaptations for later
leamming abihiues by confemng on amimals centain “ecolugically
surplus abilites™, 1.c leaming abiliues not directly selecied for. Ro

zin (1976) also suggests that leaming mecchanisms may have
evolved first as isolated specializations and later became available to
a wider range of behavior-generators.

genies and adaptations. However, the facility with which
such simulations can be developed and explured, and the
inherent appeal of watching adaptive systems develop,
can allow the proliferation of studies not well-grounded
in a theoretical framework. Without theoreucal ground-
ing, results are difficult to interpret and t assimilate into
a coherent picture, We hope the notion of psychology as
the stucly of adaptive agency can help to unify and direct
all such studies (observations, experiments, and simula-
tions).

To capture all of the adaptive processes discussed earlier
in a simulation, we must have methods of simulating
genotypic evolution, the generation of behavior, and the
ability to learn new behaviors. (We ignore ‘cultural’
transmission for now, but see Belew, 1990). Specifically,
we use a genetic algorithm to evolve successive genera-
tions of a population of neural network architectures,
which in turn contro! the behavior of simple creatures
which can learn as they live in a simulated environment.
This is an extension of earlier work exploring the use of
genetic algorithms to design network architectures capa-
ble of learning specific input/output mapping tasks (Mill-
er, Todd, and Hegde, 1989); here, the algorithm’s meas-
ure of fitness depends not on leaming an arbitrary task,
but on behaving adaptively in the simulated environment.

In simulating the evolution of further adaptive processes,
for instance specific behavior-generators and specific
leaming abilitics, we must first specify some environment
and what defiaes fitness in that environment. We then
Jbserve, through the course of the evolutionary simula-
tion, which adaptive processes are most important for
maximizing individual fitness by “solving” the relevant
environmental problems. Ackley and Littman’s (1990)
sophisticated simulations, for example, show the unlity of
evolving motivational systems to gude lecaming.
Nevertheless, their simulations are pre-sct to operate ci-
ther with learning or without, rather than set up with an
environment whose adapuve problems allow the evolu-
tion of learning itself to be studied. We stnive o create
simulations in which the subsidiary adaptive processes
that evolution can spawn are as open-ended as possible.

6.1 TYPES OF LEARNING

Since we are primarily interested in using simulation to
explure issucs in the evolutivn of leaming, we must ad-
dress the varieties of learming we could mvestigate. Tol-
man (1932) asked "Is there more than one type of learn-
ing?" The answer, of course, depends on what onc
means by ‘type’. Different kinds of learning might be
distinguished by at least three different critenia. (1) type
of experimental paradigm uscd to mvesugate 1t; (2) neur-
al mechanism implementing it; (3) adaplive functions
served by it. Bchaviorists concentrated on the first cri

tcrion, defining classical versus operant conditioning, for
cxample, according to the sorts of environmental con-
ungencies the experimenter scts up for the laboratory an-

73

74

Miller and Todd

imal. Connectionists view the first criterion in terms of
structuring the training set and test set for the neiwork,
and the second in terms of the specific mathematical
learning algorithm implemented in the network. Rarely
has a taxonomy of leaming been conceptualized in terms
of adaptive function. The theoretical and empirical study
of learning could concentrate on any of these three ways
of distinguishing learning processes, or it could pursue a
fourth strategy of attempting to elucidate general princi-
ples of operation governing all learning processes, under-
stood in some sufficiently abstract way -- as in Shepard’s
(1987a) work towards a universal law of generalization.

Fortunately, there may be some correspondence between
learning mechanisms construed in terms of experimental
paradigm used to investigate them and leaming mechan-
isms construed in terms of their adaptive functions.
Learning mechanisms evolved to solve particular ecolog-
ical problems; 10 the extent that different experimental
paradigms present ecologically valid, adaptively iso-
morphic problems, they may map onto real adaptive
functions of learning. But the fit between adaptive func-
tions and neural mechanisms may be much looser:
"analysis of leaming in terms of functional problems
does not map directly onto the learning theorists’ analysis
in terms of [neural] mechanisms" (Shettleworth, 1984, p.
431). Different adaptive functions might be implemented
by similar neural mechanisms for changing synaptic
weights, or the same adaptive function might be imple-
mented in very different neural mechanisms in differcnt
species.

For these reasons, we chose to categorize leaming
mechanisms by adaptive function rather than by experi-
mental paradigm or neural mechanism. But the problem
remains: which adaptive function should be explored
first? To investigate the evolution of learning for exploit-
ing environmental reguiarities specifically as a means of
maximizing phenotype size and complexity given limited
genotype size, a simulation must include adaptive pres-
sures or constraints on genotype length or specificity.
Without such pressures or constraints, the genotype may
simply expand to accurately specify (hardwirc) the ap-
propriate phenotype, rather than cvolving devclopmental
tricks that depend on internalizing environmental regular-
ities during development. Clearly, such pressures depend
on what developmental mechanisms exist or can evolve
for generz.ing phenotypes from genotypes. Since the va-
garies of real neural development and of adaptive pres-
sures nn genolype size are still poorly understood, we
have not found a satisfactory general method for simuiat-
ing neural development or for imposing pressures on
genotype length. So we have avoided simulating the evo-
lution of leamning as a way of achieving developmental
leverage.

Exploring the third *adapting to particulanties’ function
of leamning requires setting up an adaptive problem with
environmental changes too rapid for genotypic evolution

to track. Butif the environment changes too rapidly, then
extensive simulation of learning during an organism’s li-
fespan would be required. Likewise, exploring the
secord information-integration function of learning
would require simulating extensive iateractions between
creatures and worlds, including recurrent network
dynamics or memory encoding and retrieval systems.
We did not want to become mired in simulating
constantly-changing environments or sophisticated
dynamic leamning mechanisms, so we opied for a kind of
imprinting scenario, where experience-guided develop-
ment uses an abstract environmental regularity to help
build behavior-generators adapted to unpredictable parti-
cularities of the niche, as follows.

The simplest way to defeat natural selection is to make
the genotype unable to know ahead of time which one of
two alternate econiches it will find itself in during pheno-
typic development. If one econiche requires one kind of
behavior-generation mechanism and another econiche re-
quires a different kind, natural selection alone will be un-
able o select the proper mechanism to guide the
phenotype’s behavior. Natural selection must instead
select for the evolution of a more general mechanism that
can flip into one of two states depending on some assess-
ment of which econiche it finds itself in. Thus, we chose
a kind of “imprinting” or parameter-setting based on the
early environment as the simplest possible case in which
leaming, construed as adaptation to specific environmen-
tal regularities, could evolve.

6.2 INCLUSIVE FITNESS AS THE ONLY NA-
TURAL ‘SUPERVISOR’ FOR LEARNING

Many previous attempts to use genelic algorithms to
evolve neural network architectures have evaluated archi-
tecture fitness by training the networks with a supervised
leaming procedure, (i.e. one with an externally provided
“target vector” the network is to produce given each input
veclor), typically back-propagation (Belew, McInemey,
& Schraudolph, 1990; Miller, Todd, & Hegde, 1989; for
a review, see Weiss, 1990). While supervised leaming
paradigms may be appropriate in evolving connectionist
systems for particular commercial applicauons, they are
problematic and perhaps misleading in scientific studies
of adaptive agency. In particular, to be biologically plau-
sible, the source of the “targets” or other supervising
feedback must be justified. Organisms as whole func-
lioning agents in real environments rarely receive pat-
tems of information analogous to training signals
back-propagauon. Although the distinction between su-
pervised and unsupervised lcaning procedures can be
blurred, we have chosen to focus on the more defensible
latter end of the spectrum, including self-organizing, as-
sociative, and simple feedback-based mechanisms. But
cven if we sidestep the issue of target-based training, the
concept of feedback still raises problems.

Exploring Adaptive Agency I; Theory and Methods for Simulating the Evolution of Learning

Years of learning by "being taught” instill in us intuitions
about the utility of corrective feedback to guide learning.
But such intuitions make it casy to overlook the fact that
it is at least as difficult for organisms to ¢volve the ability
to perceive feedback signals from the environment to
guide their learning, as it is to evolve the perception of
any other complex external cues. Consider for example
the complexities involved in registering the information
that one has just been rebuffed in a social exchange.
Feedback signals cannot be assumed to be just somehow
"provided” to an organism for it to use in adjusting its
behavior. Instead, feedback systems must be understood
as special sensory systems evolved to provide informa-
tion to special learning mechanisms that in turn adaptive-
ly change the functioning of certain behavior generators
(e.g. in the simulations of Ackley and Littman, 1990).
Feedback systems, whether motivational, emotional, voli-
tional, or proprioceptive, evolve just like other aspects of
adaptive agency -- by cumulative selection of incremen-
tally better-adapted designs.

Ideally, an organism might prefer to guide its learning
with direct informaton about how its inclusive fitness
changes as a result of its behavior. But there is no such
thing as an inclusive fitness transducer that can be used to
supervise leaming. Organisms must instead evolve to
sense inclusive fitness indirectly, through whatever proxi-
mal sensory cues have been reliably associated wath -
creased fitness in their environment. Thus, natural selec-
tion itself is ultimately the only source of ‘supervision’
for learning systems.

The indirectness of natural selection’s supervision of
learning leads to the complexity inherent in real evolved
leaming mechanisms. Humbled by this complexity, we
decided not to clutter our instial simulations with the re-
quirement of evolving a motivational system to provide
supenvising fcedback during leaming, in addition ©
evolving the lcarning system itself. So instead we chose
to start by cxploring the simplest set of unsupervised as-
sociative leamning mechanisms we could conceptualice,
as will be described below.

6.3 THE GENETIC ALGORITHM FOR EVOLYV-
ING NEURAL NETWORKS

Te simulate the evolution of leaming in our explorations
of adaptive agency, we use a relatively standard form of
Holland’s (1975) genetic algorithm, combined with a
simple "developmental” method which translates geno-
types into neural network architecture phenotypes. In
this method, a strong genetic specification scheme (as
defined by Miller, Todd, and Hegde, 1989) interprets
cach genotype as a connectivity constraint matrix that
directly specifies the nature of cach unit and connection
in the network architecture.

Once a network, instantiaung the behavioral mechanisms
of an individual creature, has been so constructed, it is
evaluated in the simulated world over several time-steps
representing the creature’s lifespan. During each uime-
step, a creature’s network receives sensory input based
on the current external environmental cues available,
processes that input according to its architecturc and
current weights, generates behavior based on the activa-
tion of its output units, and changes its connection
weights based on an unsupervised learning rule (e.g.
Hebbian association). The effects of the creature’s
behavior on the world and on its own fitness are then re-
gistered, and the next time-step begins.

7 A SIMPLE SCENARIO FOR THE EVO-
LUTION OF UNSUPERVISED LEARN-
ING

For our first exploration of adaptive agency, we attempt-
ed to devise the simplest, cleanest scenario in which
leaming could prove adaptive, focusing on a kind of im-
printing function. After analyzing the building blocks
needed for associative learning, we analyzed what sorts
of environments might cxert adaptive pressures to evolve
that type of leaming. Finally, we constructed an ap-
propriate simple world to see if learning would spread
threugh a population of simulated creatures behaving in
that world. We explain the scenario used by outlining a
biological metaphor that specifies the structure of the
econiche and the nature of the adaptive problem. (The
scenario and results are described in more detail in Todd
and Miller (1990); space constraints preclude making this
section much more than an overview.)

Our scenario can be imagined as an underwater realm, in
which parents emit eggs randomly into two different
types of feeding patches. those where food is green and
poison red, or vice-versa. Each creature in this world
lives a fixed lifespan, eating or ignoring food and poison
at cach life-step, and amassing energy which determines
its eventual number of offspring in the next generation.
Eating food raises cnergy; cating poison drains encrgy.
Food smells sweet and poison smells sour across all
creatures, but with some perceptual crror rate -- the
smell-sense accuracy -- determined by the turbulence of
the water in this world. Food and poison cach have
characteristic fixed colors within one creature’s life, but
the meaning of each color varies between creatures, food
being red for some and green for others, depending on
their paich as mentioned above. The color-sense 15 100%
accurate. Thus natural selection can ‘predict’ the associ-
ation between smell and object, but not between color
and object -- this will be the task for leaming.

76

Miller and Todd

I Chromignarus sieplex

sweet szell unit
{e.g. 75% accurate)

tixed pos. connection

motor {eating) unit

[ch:c:odlsclpulua sizplex l

O red or green color unit
K (100% accurate)
&

0
U

L
fixed pos. connection B

sweet scell unic
le.g. 75% accurate)

learnable connection

sotor (eating} unit

Figure 1. The network designs of Chromgnarus (without color
learning), top, and Chromodiscipulus (with color learmung), bot-
tom.

7.1 EVOLVING ADAPTIVE NETWORKS

As the genetic operators process genotypes again and
again through many generations, recombination and mu-
tation will sometimes produce particularly fit network
designs. One reasonable design we can expect consists
of a sweet smell sensing unit connected to a motor unit
(which conirols the creature’s cating) by a fixed positive
weight. A creature equipped with this nervous sysiem
will depend purely on smell to decide when to eat, with
its behavioral accuracy dependent on the inherent noisi-
ness of the smell sense in its world (i.e. by amount of tur-
bulence). Although this design will sometimes make
mistakes (that is, ignoring food or eating poison that
smells wrong because of the turbulence), still on average
it will eat more food than poison. Thus these creatures’
energy, and number of offspring, will be higher than if
they were just cating randomly. We call this design the
color-blind eater, or, more fancifully, Chromignarus sim-
plex, and it is shown in the top portion of Figure 1.

The best evolved creature design though is an claboration
on the color-blind cater chassis. Creatures of this type
gain an adaptive cdge by including a red or green color
sensing unit, along with a leamable connection to the mo-
tor (cating) unit. This creature design we name Chromo-
discipulus simplex, color-leaming caters, as shown at the
bottom of Figure 1.

With this design, an appropriatcly excitatory link
between the color unit and the eating unit will be built up
over successive time-steps in the creature’s life by a Heb-
bian correlational weight-change mechanism. Eventually,
this weight will be large enough that the color unit alone
can cause the cating unit to come on, regardless of what

|

the sweet smell unit says to do -- the creature has now
learned that a particular color means food. The creature
can now rely on this completely accurate visual cue, rath-
er than the inaccurate smell cue, and always choose to €at
properly, thereby increasing its fitness further.

7.2 INITIAL SIMULATION RESULTS

We continued our investigation of the conditions under
which leaming could evolve with the more interesting
question of how quickly learning would evolve, given
various srmell accuracies in different worlds. By tracking
population average fitness values, it is possible to tell
when the use of leaming has spread through the popula-
tion. Initially, the average fitness quickly rises to a pla-
teau at which the fixed sweet-smell to eating unit connec-
tion is present in most of the creatures (Chromignarus
temporarily dominates). After remaining fairly level at
this fitness value for possibly many more generations, the
average population fitness again jumps, indicating that
the learnable connection from a color unit has penetrated
the population (Chromodiscipulus ultimately rules).
Average fitness then levels out again, this time around its
final highest value. Thus recording when fitness jumps
occur can tell us when the different creature designs
predominate in the population.

For each of 17 smell accuracies between 50% and 100%
we ran 20 populations of 100 individuals for 1500 gen-
erations ecach. Figure 2 shows how many generations it
took cach population to make cach of the two jumps to
new fitness-platcaus. These two jumps correspond to the
widespread appearance of Chromignarus (without color
learning) - indicated by asterisks -- and of Chromodisci-
pulus (with color leaming) -- indicated by bullets. The
bottom curve shows the average number of generations
taken to evolve Chromignarus across the 20 runs at cach
accuracy level, and the top curve indicates the analogous
average generations to evolve Chromodiscipulus, and
thus learning itsclf.

The fixed smell connection (the Chromignarus design)
evolves rapidly, in less than 100 gencrations for most ac-
curacy levels. The greater the accuracy of smell, the
more quickly the fixed smell connection spreads, because
the adaptive advantage to be gained from evolving it (i.c.
the adaptive pressure) increascs. More interesting is the
effect of smell accuracy on time taken to evolve color
leaming (Chromodiscipulus). Here we found an unex-
pected U-shaped relationship. color leaming cvolved
most quickly for smell accuracies around 75%, and took
longer and longer for accuracies diverging on cither side
of that middle range (as shown by the upper, solid, curve
in Figure 2).

g

Gongrations

Exploring Adaptive Agency I: Theory and Methods for Simulating the Evolution of Learning

1600

1400

1200

g

60 100

Figure 2. Generations to evolve Chromignarus (without color
leaming) and Chromodiscipulus (with leamning) plotted against
smell-sense accuracy. Asterisks indicate tme to evolve
CFRromignarus for each of 20 runs at each of 17 smell-sense ac-
curacy Ievels; the dotted line indicates average ume across the
20 runs at each smell accuracy. Bullets indicate time to evolve
Chromodiscipulus for the same 20 runs at each accuracy level,
the solid hine indicates average time across the 20 runs at each
accurecy. Note that average time to evolve Chromignarus de-
creases monotonically as smell sense accuracy increases, but
average time to evolve Chromodiscipulus foliows a U shaped
Leaming Evolution Curve.

73 THEORETICAL INTERPRETATION OF
THE U-SHAPED EVOLUTIC™ FUNCTION

We view the U shape as emerging indirectly from a
trade-off between the phylogenetic adaptive pressurc to
evolve learming (dunng specics-wide evolution), and the
ontogenetic ease of leaming (duning cach individual
creature hfctime). These forces intcract at the vafious
smell sense accuracy levels as follows.

At low smell accuracies, where Chromignarus does quite
poorly, there 1s great phylogeneuc adaptive pressurc 10
evolve color leaming, because 1t would add significantly
to this creature’s fitness by overcoming its color-blind,
smell-guided error-pronc behavior. However, this large
potenual benefit 1s offse: by the ontogenetic difficulty of
actually accomplishing learning at noisy Jow smell accu

racies. In fact, learning can be so slow n this casc thata
leamning creature’s lifespan may clapse before it gans
any benefit from this ability. Thus the onlogenctic
difficulty of lcaming offscts 1ts hugh phylogencuc adap

tiveness at low smell accuracies, and lcaming will take a
leng time to evolve.

At high smell accuracies, in contrast, color learning
would be easy to perform ontogenetically, because per-
ceived smell, color, and substance type will be highly
correlated, and the associations between them could build
up quickly. However, there is litide phylogenetic adap-
tive pressure 1o evolve color leaming in this case, be-
cause the smell sense alone suffices to guide highly adap-
tive eating behavior. Since natural selection cannot dis-
tinguish Chromignarus from Chromodiscipulus if they
are both doing almost perfectly, this ‘ceiling effect” will
keep Chromodiscipulus from proliferating. So again
color learning wil! take a long time to evolve.

But for middle smell accuracies, color learning is rela-
tively adaptive and relatively casy. Color leaming gives
a significant fitness increase over using smell alone, and
learning can occur fairly quickly, since the eating unit
comes on rather more often to food than to poison. Mid-
level smell accuracy represents a happy medium between
phylogenctic adaptive pressure and ontogenelic ease of
leaming, leading to the rapid evolution of color leaming
and its spread through the population.

8 PLANNED EXTENSIONS AND FU-
TURE RESEARCH

Qur theoretical motivation will continue to be the ex-
ploration of adapiive agency and interactions among
adaptive processes; our methodological strategy will con-
tinue 1o focus on the search for simple, elegant scenarios
that reveal potentially gencral paitens and dynamics
underlying adaptive agency. Gaven this oricntation, we
have gradually abandoned our carlier ambitions to create
a general-purpose system for investigating the evolution
of very complex nervous systems in very complex en-
vironments. The rush to build as much biological realism
as possible into our simulations as quickly as possible,
can, we fear, obscure those features of simulation that
make it so useful in other scicnces. parametric control,
replicability, conceptual clarity, case of analysis, and
speed. Thus, we hope o develop more simple scenarios
that not Jaly capture the central features of certain adap-
tive problems, but that can reveal unanticipated paticms
and complexitics.

More specifically, we intend to develop as series of
slightly morc complex lcaming scenarios to investigate
how natural scleclion, associative feaming, and environ
mental dynamics interat. One could imagine that, given
a scrics of results from such scenarios, a more gereral
thecory con.crming the interaction of adaptive processes
might emerge - not a formalistic mode! in terms of

dynamical systems or information theory, but 2 concrete
understanding of the interactions among adaptive pres
sares, cuc structures in different environments, genctic
fepresentations and operators, devclopmental mechan

"N

78

)y

Miiler 2nd Todd

isms, learning, behavior-generation, and information-
processing. Later, we intend to address the adaptive
problems cof foraging, communication, and prc.can
behavior. At each siep, we hope to keep our motivations
for simulation closely tied to resolving theoretical issucs
in the study of adaplive agency, while remaining sensi-
tive to the sorts of unanticipated phenomena, patterns,
and dynamics that simulation research so often reveals.
In allowing research to be guided so strongly by a clearly
articulated conceptual framework, we may give up some
of the immediate richness and appeal of simulation-for-
its-own sake, but we hope to achieve a theoretical depth
and breadth, and a connection to major issues and pesen-
nial questions, that will, we believe, be more satisfying in
*he end.

Acknowledgenients

This research was partially supported by National Sci-
ence Foundation Graduate Fellowships to both authors.
Any opinions, findings, conclusions, or recommendations
expressed in this publication are those of the authors and
do not necessarily reflect the views of the National Sei-
ence Foundation.

We wish to thank Dave Rumethart, Roger Shepard, John
Tooby, Leda Cosmides, David Ackley, and Rik Belew,
who have influenced and guided this research along the
way.

References

Ackley, D.H., & Littman, M.S. (1990). Learning from
natural selection in an artificial environment. In
Proceedings of the International Joint Confer-
ence on Neural Networks (pp. 189-193). Hills-
dale, NJ: Eribaum,

Belew, R.K. (1990). Evolution, leaming and culture:
Computational metaphors for adaptive scarch.
Complex Systems, 4, 11-49.,

Belew, R.K., McInemey, J., & Schraudclph, N.N. (1990).
Evoiving netwoi ks: Using the genetic algorithm
with connectionist learning (Tech. Rep. No,
CS90-174). San Diego: University of Califor-
nia, Computer Science and Engineering Depart-
ment,

Boakes, R.A (1984). From Darwin to Behaviorism.
Cambridge, UK: Cambridge University Press.

Polles, R.C. (1970). Species-specific defense reactions
and avoidance learning. Psychological Review,
77,32-48.

Bolles, R.C. (1988). Nativism, naturalism, and niches. In
R.C. Bolles & M.D. Beecher (Eds.), Evolution
and learning (pp. 1-15). Hillsdale, NJ: Erlbaum,

Bolles, R.C., & Fanselow, M.S. (1980). A perceptual-
defensive-recuperative model of fear and pain.
Behavioral and Brain Sciences, 3,291-301,

Braitenberg, V. (1984). Vehicles: Experiments in synthet-
ic psychology. Cambridge, MA: MIT

Press/Bradford Books.

Brant, D.H., & Kavanau, J.L. (1965). ‘Unrewarded’ ex-
ploration and learning in complex mazes by wild
and domestic mice. Nature, 204, 267-269.

Breland, K., & Breland, M. (1961), The misbehavior of
organisms. American Psychologist, 16, 681-684,

Chomsky, N. (1957). Syntactic siructures. The Bzgue:
Mouton,

Cosmides, L., & Tooby, J. (1987). From evolutior. to
behavior: Evolutionary psychology as the miss-
ing link, In J. Dupre (Ed.), The latest on the
best. Essays on evolution and optimality. Cam-
bridge, MA: MIT Press/Bradford Books.

Curio, E., & Vieth, W. (1978). Cultural transmission of
enemy recognition, Science, 202, 899-901.

DPavey, G. (1989). Ecological learning theory. New
York: Routledge.

Dawkins, R. (1976). The selfish gene. Oxford, UK: Ox-

ford University Press.

R. (1982). The extended phenotype. Oxford,

UK: Oxford University Press.

Dawkins, R. (1983). Universal Darwinism. In D.S. Ben-
dall (Ed.), Evolution from molecules to men.
Cambridge, UK: Cambridge University Press.

Descartes, R. (1662/1972). Treatise on man. Cambridge,
MA: Harvard University Press. Translated by
T.S. Hall,

Emlen, J.M. (1973). Ecology: An evolutinnary approach.
Reading, MA: Addison-Wesley.

Estes, W.K. (1984). Human learning and memory. In P.
Marler & H.S. Terrace (Eds.), The biology of
learning (pp. 617-62¥). New York: Springer-
Verlag,

Gaief, B.G. (1988). Evolution and leaming before
Thomdike: A forgotten epoch in the history of
behavioral research. In R.C. Bolles & M.D.
Beecher (Eds.), Evolution and learning (pp. 39-
58). Hillsdale, NJ: Erlbaum.

Garcia, 1., & Koelling, R.A. (1966). Relation of cue to
consequence in avoidance learning. Psychonom-
ic Science, 4, 123-124,

Gibson, J.J. (1966). The senses considered as perceptual
systems. Boston: Houghton-Mifflin.

Gibson, J.J. (1979). The ecological approach to visual
perception. Bostun: Houghton-Mifflin.

Gluck, M.A., Bower, G.H., & Hee, M.R. (1989). A
configural-cue network model of animal and hu-
man associative learning. In Proceedings of the
Eleventh Annual Conference of the Cognitive
Science Society (pp. 323-332). Hillsdale, NJ:
Erlbaum.

Gould, J.L., & Marler, P. (1984). Ethology and the natur-
al history of learning. In P, Marler & H.S. Ter-
race (Eds.), The biology of learning (pp. 47-14).
New *fork: Springer-Verlag.

Hamilton, W.D. (19-\4), The evolution of social behavior
Tand IL Journal of Theoretical Bioiogy, 7, 1-52.

Hemstein, R.J. (1979). Acquisition, generalization, and

Dawkir

Exploring Adaptive Agency I: Theory and Methods for Simulating the Evolution of Learning

discrimination reversal of a natural concept.
Journal of Experimental Psychology: Animal
Behavior and Processes, 5, 116-129.

Hinde, R.A. (1973). Constraints on learning: An intro-
duction to the problems. In R.A. Hinde & J.
Stevenson-Hinde (Eds.), Constraints on learn-
ing. Limitations and predispositions. London:
Academic Press,

Hinton, G.E., & Nowlan, SJ. (1987). I v leaming
guides evolution. Complex Systems, 1,495-502,

Holland, 1. H. (1975). Adaptation in natural and artificial
systems. Ann Arbor, MI: University of Michigan
Press.

Hull, C.L. (1943). Principles of behavior: An introduc-
tion to behavior theory. New Yoik: Appleton.

Jenkins, H.M. (1984). The study of animal learning in the
tradition of Pavlov and Thorndike, In P. Marler
& H.S. Terrace (Fds.), The biology of learning
(pp. 89-114). New Zork: Springer-Verlag.

Johansson, G., von Hofsten, G., & Jansson, G. (1980).
Event perception. Annual Review of Psychology,
31,27-63.

Johnston, T.D. (1981a)., Contrasting approaches to a
theory of learning. Behavioral and Brain Sci-
ences, 4, 125-173.

Johnston, T.D. (1981b). Selective costs and benefits of
learning. In J.S. Rosenblatt, R.A. Hinde, C.
Beer, & M.C. Busnel (Eds.), Advances in the
study of behavior. New York: Academic Press.

Kamil, A.C., & Roitblat, H.L. (1985). The ccology of
foraging behavior: implications for animal
learning and memory. Annual Review of
Psychology, 36, 141-169,

Kline, L.W. (1898). Suggestions toward a laboratory
course in comparative psychology. American
Journal of Psychology, 10, 399-430.

Langton, C.G. (Ed.). (1989). Artificial life. New York:
Addison-Wesley.

Lea, S.E.G. (1984). Instinct, environment, and behavior.
London: Methuen.

Logue, A.W. (1979). Taste aversion and the generality of
the laws of learning. Psychological Bulletin, 86,
276-296.

Lorenz, K.Z. (1937). The companion in the bird’s world.
Auk, 54,245-273.

Lorenz, K.Z. (1952). The past twelve years in the com-
parative study of behavior. In C.H. Schiller
(Ed.), Instinctive behavior. New York: Inierna-
tional Universities Press.

Mackintosh, N.J. (1987). Learning. In D. McFarland
(Ed.), The Oxford guide 1o animal behavior (pp.
336-346). New York: Oxford University Press.

Marler, P. (1984). Song learning. Innate species differ-
ences in the learning process. In P. Marler &
H.S. Terrace (Eds.), The biology of learning (pp.
289-31C° New York: Springer-Verlag.

Mayr, E. (1974). Behavior programs and evolutionary
steategics. American Scienust, 62, 650-659.

Meehl, P.E. (1950). On the circularity of the law of ef-
fect. Psychological Bulletin, 47, 52-75.

Menzel, R. (1984). Biology of invertebrate learning
(Group Report). In P. Marler & H.S. Terrace
(Eds.), The biology of Ilearning. Berlin:
Springer-Verlag,

Michotte, A. (1954). La perception de la causalite, (2nd
ed.). Louvain: Publications Universite de
Louvain.

Milter, G.F,, Todd, P.M., & Hegde, S.U. (1989). Design-
ing ncural networks using genetic algorithms. In
J.D. Schaffer (Ed.), Proceedings of the Third
International Conference on Genetic Algorithms
(pp. 379-384). San Mateo, CA: Morgan Kauf-
mann.

Morgan, C.L. (1896). Habit and instinct. London: Ed-
ward Amold.

Ohman, A., Dimberg, U., & Ost, L.-G. (1985). Animal
and social phobias: Biological constraints on
learned fear responses. In S. Reiss & R.R. Boot-
zin (Eds.), Theoretical issues in behavior thera-
py.New York: Academic Press.

Plotkin, H.C., & Odling-Smee, F.J. (1979). Leaning,
change, and evolution: An enquiry into the
teleconomy of learning. Advanced Studies of
Behavior, 10, 1-41,

Rescorla, R.A., & Wagner, AR. (1972). A theory of
Pavlovian conditioning: Variations in the effec-
tiveness of reinforcement and nonreinforcement,
In A H. Black & W.F. Prokasy (Eds.), Classical
conditioning II: Current research and theory.
New York: Appleton-Century-Crofts.

Revusky, R. (1977). Iaterference with progress by the
scientific establishment: Examples from flavor
aversion learning. In N. Milgram, L. Krames, &
T. Alloway (Eds.), Food aversion learning. New
York: Plenum.

Garcia y Robertson, R., & Garcia, J. (1988). Darwin was
a [earning theorist. In R.C. Bolles & M.D,
Beecher (Eds.), Evolution and learning. Hills-
dale, NJ: Erlbaum.

Rozin, P. (1976). The evolttion of intelligence and ac-
cess to the cognitive unconscious. Progress in
Psychobiology and Phxsiological Psychology, 6,
245.280.

Rumelhart, D.E., & McClelland, J.L. (Eds.). (1986).
Parallel distributed processing: Explorations in
the microstructure of cognition. Cambridge,
MA: MIT Press/Bradford Books.

Seligman, M.E.P. (1970). On the generaiity of the laws of
leaming. Psychological Review, 77, 406-418.

Seligman, M.E.P., & Hager, J.L. (1972). Biological
boundaries of learning. Englewood Cliffs, NI:
Prentice-Hall.

Shepard, R.N. (1987a). Evolution of a mesh between
principles of the mind and regularities of the
world. In J. Dupre (Ed.), The latest on the best:
Essays on evolution and optimality. Cambridge,

79

80

Miller and Todd

MA: MIT Press/Bradford Books.

Shepard, R.N. (1987b). Toward a universal law of gen-
eralization for psychological science. Science,
237,1317-1323.

Shepard, R.N. (1989). Internal representation of universal
regelarities: A challenge for connectionisr. In
L. Nadel, L.A. Cooper, P. Culicover, & R. M.
Harnish (Eds.), Neural connections and mental
computation. Cambridge, MA: MIT
Press/Bradford Books.

Shettleworth, S.J. (1983). Function and mechanism in
learning. In M. Zeiler & P. Harzen (Eds.), Ad-
vances in analysis of behavior: Biological fac-
tors in learning (Vol. 3). New York: Wiley.

Shettleworth, S.J. (1984). Natr 1 history and evolution
of learning in nonhuman mammals. In P. Marler
& H.S. Terrace (Eds.), The biology of learning
(pp. 419-434). New York: Springer-Verlag.

Singer, W. (1988). Ontogenetic self-organization and
learning. In J.L. McGaugh (Ed.), Brain organi-
zation and memory: Cells, systems, and circuits.
New York: Oxford University Press.

Skinner, B.F, (1953). Science and human behavior. New
York: Macmillan,

Slobodkin, L.B., & Rapoport, A, (1974). An optimum
strategy in evolution. Quarterly Review of Biolo-
£ 49, 181-200.

Small, W.S. (1900). An experimental study of the mental
processes of the rat. American Journal of
Psychology, 11, 131-165,

Spencer, H. (1855). Principles of Psychology (Vols. 1-2).
New York: Appleton.

Staddon, J.E.R. (1980). Optimality analyses of operant
behavior and their relation to optimal foraging.
In J.E.R. Staddon (EQd.), Limits to action: The al-
location of individual behavior (pp. 101-141).
New Yor’ . Academic Press.

Staddon, J.E.R. (1983). Adaptive behavior and learning.
Cambridge, UK: Cambridge University Press.

Stork, D.G., & Keesing, R.C. (1990). Ewvolution and
learning in neural networks: The number and
distribution of learning trials affect the rate of
evolution. Paper presented at Neural Informa-
tion Processing Systems: Natura! and Synthetic,
Denver, CQ.

Sutton, R.S., & Barto, A.G. (1987). A temporal-
difference model of classical conditioning. In
Proceedings of the Ninth Annual Conference of
the Cognitive Science Society (pp. 355-378).
Hillsdale, NJ: Erlbaum.

Thorndike, E.L. (1898). Animal intelligence: An experi-
mental study of the associative processes in an-
imals. Psychological Review Monographs, 2, 1-
109.

Thorndike, E.L. (1911). Animal intelligence. New York:
Macmillan.

Timberlake, W., & Lucas, G.A. (1989). Behavior systems
and learning: >From misbehavior to gencral

principles. In S.B. Klein & R.R. Mowrer (Eds.),
Contemporary learning theories (pp. 237-275).
Hillsdale, NJ: Erlbaum.

Tinbergen, N. (1951). The study of instinct. Oxford:
Clarendoa Press.

Todd, P.M., & Miller, G.F. (1990). Exploring adaptive
agency II: Simulating the evolution of associa-
tive leamning. In Proceedings of the Internation-
al Conference on Simulation of Adaptive
Behavior: From Animals to Animats. Cam-
bridge, MA: MIT Press.

Todd, P.M., & Miller, G.F. (in press). Exploring adaptive
agency III: Simulating the evolution of habitua-
tion and sensitization. In Proceedings of the
First International Conference on Parallel
Problem Solving from Nature. Berlin: Springer-
Verlag.

Vaccarino, F.J., Schiff, B.B., & Glickman, S.E. (1989).
Biological view of reinforcement. In S.B. Klein
& R.R. Mowrer (Eds.), Contemporary learning
theories: Pavlovian conditioning and the status
of traditional learning theory (pp. 111-142),
Hillsdale, NJ: Erlbaum.

Watson, J.B. (1914). Behavior: An introduction to com-
parative psychology. London: Holt, Rinehart, &
Winston,

Watson, J.B. (1919). Psychology from the standpoint of a
behaviorist. Philadelphia: Lippincott.

Weiss, G. (1990). Combining neural and evolutionary
learning: Aspects and approaches (Tech. Rep.
No. FKI-132-90). Munich: Technical Universi-
ty of Munich.

Williams, D.R., & Williams, H. (1969). Auto-
maintenance in the pigeon: Sustained pecking
despite contingent non-reinforcement. Journal
of the Experimental Analysis of Behavior, 12,
511-520.

The Evolution of Learning:
An Experiment in Genetic Connectionism

David J. Chalmers
Center for Research on Concepts and Cognition
Indiana University
Bloomington, IN 47408.
dave@cogsci.indiana.edu

Abstract

This paper explores how an evolutionary pro-
cess can produce systems that learn. A gen-
eral framework for the evolution of learn-
ing is outlined, and is applied to the task of
evolving mechanisms suitable for supervised
learning in single-layer neural networks. Dy-
namic properties of 2 network’s information-
processing capacity are encoded genetically,
and these properties are subjected to selec-
tive pressure based on their success in pro-
ducing adaptive behavior in diverse environ-
ments. As a result of selection and ge-
netic recombination, various successful learn-
ing mechanisms evolve, including the well-
known delta rule. The effect of environmen-
tal diversity on the evolution of learning is
investigated, and the role of different kinds
of emergent phenomena in genetic and con-
nectionist systems is discussed.

1 INTRODUCTION

Evolution and learning are perhaps .he two most fun-
damental adaptive processes, and their relationship
is very complex. This paper eaplores one aspect of
this relationship. how, via the process of evolution,
the process of learning might evolve. Taking this ap-
proach, we can view evolution as a kind of second-
order adaptation. it is a process that produces indi-
vidual systems thet are not immediately adapted to
their environment, but that have the ability to adapt
themselves to many environments by the first-order
adaptive process of learning. Here the learning mech-
anisms themselves are the object of evolution. Using
a combination of methods drawn from connectionism
and genetic search, we will start with a population of
individuals with no ability to learn, and attempt to
evolve useful learning techniques.

The details of the experiments performed here start
in the second section. The remainder of this intro-

duction is devoted to a somewhat philosophical dis-
cussion of the role of evolutionary computation in the
modeling of cognitive systems, and in particular the
importance of the phenomenon of emergence. A brief
outline of related work combining connectionist and
genetic methods is also given. Readers whe wish to
skip this background material may proceed directly to
the second section.

1.1 EVOLUTION, EMERGENCE AND
COMPUTATION

In recent years, the evolutionary approach to the com-
putational modeling of cognitive systems has gained
prominence, following the work of Holland and his col-
leagues on genetic algorithms (Holland 1975, Goldberg
1989), a class of methods of search directly inspired by
biological systems. The attractions of this approach
are many. To the biologist, ethologist or psychologist,
evolutionary computation offers insight into the mech-
anisms that gave rise to adaptations present in existing
living systems. To the computer scientist or the engi-
neer, genetic search can yield a powerful method of
problem solving. If we accept the often-repeated slo-
gan, “Nature is smarter than we are”, then harnessing
the problem-solving methods that nature uses males
sound practical sense. Finaliy, tc a cognitive scientist,
evolutionary methods offer 2 paradigm of cmergence
that seems to have much in common with the kind of
emergence found in contemporary connectionist sys-
temns. In both kinds of systers, complex high-level
behavior is produced as a result of combining simple
low-level computational mechanisms in simple ways.

The kind of emergence found in genetically-based sys-
tems differs, however, from that found in connec-
tionist systems. Connectionist systems support syn-
chronic emergence, or emergence over levels: at a
given time, a host of low-level computations are tak-
ing place, which when looked at on anolner level can
be interpreted as complex high-level functioning. By
contrast, genetically-based systems support diachronic
emergence, of emergence over tilne. primitive compu-
tational systems gradually evolve towards greater com-

81

82

Chalmers

plexity.

To the cognitive scientist, while there is 2 good deal of
interest in the process of evolution, the greatest inter-
est lies in the product. One wishes that eventually, as
a product of the appropriate sort of genetic search, we
will be able to produce plausibly functioning cognitive
systems. This is where the distinction between syn-
chronic and diachronic emergence becomes important.
The diachronic emergence of the evolutionary process
gives no guarantee that the systems that result from
the process will manifest the kind of emergence-over-
levels chat is so important in connectionist systems.
For example, classifier systems, the most prominent
application of genetically-based computation (Holland
1986), give rise via genetic search to a kind of produc-
tion system, a paradigm of symbolic computation. To
someone—a connectionist, for example- who believes
that emergence-over-levels is fundamentai to most rog-
nitive phenomena, this is somewhat unsatisfying. This
is not to say that (lassifier systems are uniuteresting—
they have yielded powerful insights into the process
of learning, for instance (see e.g. Holland, Holyoak,
Nisbett and Thagard 1986)—but it would be very in-
teresting to see whether evolutionary methods could
be used to develop systems that might be classed as
emergent in their own right.

The road to achieving synchronic emergence through
evolutionary methods seems clear: loosen the connec-
tion between genotype and phenotype.! In classifier
systems (and in most other current applications of ge-
netic algorithms) the connection between these is very
direct. An element of the genome codes for a feature-
detector or an action in the phenotype in a direct,
symbolic fashion. This contrasts strongly with the hu-
man case, in which elements of the genome appear to
determine phenotypic functioning in only a very indi-
rect way, coding for low-level mechanisms that produce
human behavior via “action at a distance”. When the
genotype encodes high-level features directly and sym-
bolically, there is no room for synchronic emergence.
Emergence-over-ievels can only take place when lev-
els are distinct. The key to achieving full emergence
with evolutionary systerus seems to lie in the ability to
allow phenotypic characteristics to emerge indirectly
from genetic information.

There is another motivation for indirect mappings
from genotype to phenotype. open-ended search. Cur-
rent genetically-based methods have been criticized for
not allowing a sufficiently “open-ended” space of pos-
sibilities for evolution. It is a feature of current genetic

!The genotyne is the collection of genetic information
passed on between generations: in a genetic algonthm,
this is typically a string of bits. The phenotype 1s the
behavioral expression of the genotype, an entity that in-
teracts with an environment and is subject to selection by
differential fitness. In the human case, genotype=DNA,
phenotype=person.

search methods that a genotypic space is precisely
specified in advance, and search cannot go outside this
space. When this is coupled with a direct genotype-
to-phenotype mapping, it translates directly into a
strongly-delineated phenotypic space whose properties
are well-understood in advance. The role of genetic
search is reduced to that of optimizing over such a
well-understood space. However, if the relationship
between genotype and phenotype is indirect and emer-
gent, phenotypic space need not be so strongly con-
strained. To be more precise, in such cases phenotypic
space will be indirectly constrained by the genotypic
space, but synchronic emergence guarantees that high-
level phenotypic characteristics need not be limited in
advance by the imagination of the designer.

There are at least two different ways to achieve such
an emergent relationship between genotype and phe-
notype. The first is to make the genotype code for
subsymbolic compatation in the phenotype. it might,
for example, determine the low-level computations of
a connectionist system, without explicitly constrain-
ing high-level behavior. Secondly, a genotype might
code for developmental processes in the phenotype.
On this approach, the phenotype's final form would
not be specified, but instead would result from a com-
plex pattern of developmental processes cver its life-
time. In this paper, we will use both kinds of emergent
genotype-phenotype relationships simultaneously: the
genotype will specify the dynamics of a developing sys-
tem that interacts with an environment, and these dy-
namics will control low-level properties of a connec-
tionist system. In this way, we will see whether adap-
tation at the level of evolution can give rise to adapta-
tion at the level of the individual: specifically, whether
we can produce, through evolution, the capacity for a
connectionist system to learn.

1.2 GENETIC CONNECTIONISM

The combination of genetic search with connectionist
computation is already popular. The power of genetic
coding at the subsymbolic level is well-recognized. A
key motivation behind this “genetic connectionism”
stems from the fact that due to the synchronic emer-
gence of connectionist systems, it is difficult to know
in advance precisely which low-level computations are
appropriate for a specific high-level behavior. In view
of this difficulty, it makes sense to use genetic methods
to search for an appropriate low-level computational
form. Rather thau construct the right kind of system
or architecture by hand, why not let natural selection
do the work?

Genetic connectionism to date has usually taken one
of two forms. Genetic information has been used to
encode the connection strengths in a neural network
(e.g. Belew, McInerney & Schraudolph, 1990, Wilson
1990), or to encode the overall topology of a network
(Miller, Todd & Hegde 1989; Whitley, Starkweather &

The Evolution of Learning: An Experiment in Genetic Connectionism

Bogart 1989). These methods have yielded interesting
results on the optimization of network design. They
have not, however, led to qualitatively new kinds of
connectionist processes. The reason for this lies with
the fact that the phenotypic spaces are qualitatively
well-understood 1n advance (although, as pointed out
above, the relationship between individual phenotypes
and genotypes may not be). Genetic methods provide
a powerful method of searching these spaces, but are
unlikely to come up with surprising results. Soon we
will look at an application where the nature of the
phenotypic space is less clear in advance.

Much interesting recent work has focused on the re-
lationship between evolution and learning. It has be-
come apparent that genetic connectionism is an ideal
modeling tool in this endeavor. genetic algorithms
providing an elegant model of evolution, and connec-
tionism providing simple but powerful learning mech-
anisms. Belew, Mclnerney and Schraudolph (1990),
following up suggestions by Maynard Smith (1987)
and Hinton and Nowlan (1987), have demonstrated
the complementary nature of the two phenomena: the
presence of learning makes evolution much easier (all
evolution has to do is find an appropriate initial state
of a system, from which learning can do the rest); and
evolutionary methods can significantly speed up the
learning process. Nolfi, Elman and Parisi (1990) have
simlarly investigated the ways in which the presence
of learning might facilitate the process of evolution.

These studies have presumed a learning process to be
fixed in advance—usually backpropagation—and have
taken the object of evolution to be the initial state of a
system, upon which the learning process may act. The
genesis of the learning mechanisms themselves is not
investigated. This study will take a different approach.
Here, the learning process itself will be the object of
evolution. We will start with systems that are unable
to learn, subject these systems to genetic recombina-
tion under selective pressures based on their ability to
adapt to an environment within their lifetime, and see
whether any interesting learning mechanisms evolve.

2 EVOLUTION OF LEARNING IN
NEURAL NETWORKS

2.1 GENERAL FRAMEWORK

The main idea in using genetic connectionism to model
the evolution of learning is simple: use a genome to
encode not the static properties of a network, but the
dynamic properties. Specifically, the genome encodes
a procedure for changing the connection strengths of
a network over time, based on past petformance and
environmental information. In the experiment to be
outlined here, the genome encodes no static proper-
ties at all. The initial configuration of a network is
instcad deterrmined randumly (witiun a constrained

framework). Thus, if genetic search 15 to be successful,
it must evolve a lcarning procedure that can start from
a wide variety of network configurations and reliably
reach an appropriate result.

Working within this paradigm it is important to distin-
guish two levels of adaptation: learning—adaptation
at the level of the individual—where an individual
over time adapts to its e wironment, and evolution—
adaptation at the level of the population—where over
the course of evolutionary history a population grad-
ually evolves mechanisms that improve the fitness of
its members. In our case, the fitness of a single mem-
ber of the population will be measured by its capac-
ity for adaptation within its lifctime (learning), so the
evolutionary mechanisms cau Le viewed as a second-
order adaptive process. a population-wide adaptation
that over generations produces better adaptive pro-
cesses within the lifetime of an individual.

A vital component of the learning process is the en-
wwronment, If the environment were relatively static,
there might be little need for learning to evolve. Sys-
tems could instead e olve to a state where they have
innate mechanisms to handle that environment. But if
the environment is diverse and unpredictable, innate
environment-specific mechanisms are of little use. In-
stead, individuals need general adaptive mechanisms
to cope with arbitrary environments. In this way, a
diverse environment encourages the evolution of learn-
ing.

Our basic modus operandi is as follows. A genome
encodes the weight-space dynamics of a connectionist
system—that is, it encodes a potential learning proce-
dure. The fitness of a learning procedure is determined
by applying it to a number of different learnable tasks.
This is achieved by creating a number of networks and
putting them in different environments for a specified
amount of time. (In the experiments to be outlined
here, an environment consists of a set of input pat-
terns with associated training signals.) Each network
has a random initial state, but its final state is deter-
mined by its interaction with the learning procedure
and the environment. The fitness of the network is
determined by how well it has adapted to its environ-
ment after the specified amount of time. The fitness
of the learning procedure is derived from the fitness of
the various networks that have used it. Learning pro-
cedures reproduce differentially over time, depending
on their success in yielding adaptive networks. The
hope 1s that from a starting population of essentially
useless learning procedures, we will eventually produce
something that enables powerful adaptation.

In principle, such a process could be of interest not
only to biologists and psychologists but also to com-
puter scientists and engineers. The space of possikle
learning mechanisms is very poorly understuod. Ge-
netic scarch allows the exploration of this space in a
manner yuite different from the usual combination o/

83

84

Chalmers

ingenuity and trial-and-error employed by algorithm
designers. It is not impossible that genetic search
could come up with a learning algorithm that rivals ex-
isting human-designed algorithms. At the very least,
it might produce a learning algorithm already known
to be useful. This, in fact, was the result of the exper-
iments outlined here.

2.2 IMPLEMENTATION DETAILS

We may now move from broad generalities to specific
implementation details. In this preliminary experi-
ment, an effort was made to keep things as simple as
possible, in the interests of minimizing computational
requirements and maximizing the interpretability of
results. The choices made below were appropriate for
a study of the feasibility of the methodology outlined
above, but many of them could be varied with poten-
tially quite different results.

2.2.1 Type of Learning Task

First, we must choose what kind of learning we will
try to evolve. The three standard categories of learn-
ing tasks are supervised learning (learning with full
training feedback about desired actions), reinforce-
ment learning (where the only training information
is a scalar representing the utility of a given action),
and unsupervised learning (learning without any ex-
ternal teacher) Any of these kinds of learning could
potentially be investigated via evolutionary .nethods,
but here we chose supervised learning, as it is both
the easiest and the best-und stood of the three vari-
eties. The tasks will involve associating specific input
patterns with specific output patterns, where the de-
sired output patterns are presented to the network as
a training signal.

2.2.2 Network Architecture

The next choice to be made is that of the topol-
ogy of the networks. Under the assumption that
the genome codes for weight-space dynamics, we need
not fix weight values in advance, but it is necessary
that some form of network design be fixed. (Another
approach might be to evolve network dynamics and
network topology simultaneously, but that was not
pursued here.) The simplest non-trivial topology is
that of a single-layer feed-forward network. ‘These
networks also have the advantage that a powerful
learning algorithm--the delta rule, also knowr as the
Widrow-Hoff rule—is known to exist in advance, at
least for supervised learning tasks. This experiment
employs fully-connected single-layer feed-forward net-
works with sigmoid cutput units, with a built-in bias-
ing input unit to allow for the learning of thresholds.
A maximum connection strength of 20 was imposed,
to prevent possible explosion under some learning pro-
cedures.

2.2.3 Genetic Coding of Learning
Mechanisms

We need to be able to code complex forms of weight-
space dynamics into a simple linear genome. Clearly,
we are not going to be able to express all possible kinds
of weight-space dynamics under a single encoding; in-
stead, the dynamics must be severely constraited. In
this experiment, it was decided that changes in the
weight of a given connection should be a function of
only information local to that connection, and that
the same function should be employed for every con-
nection. For a given connection, from input unit i to
output unit j, local information includes four items:

a; the activation of the input unit j.

o; the activation of the output unit 7.

t; the training signal on output unit 4.

w;; the current value of the connection strength.

The genome must encode a function F, where
Aw;j = F(aj, 04, t;, wij).

It was decided that F should be a linear function of the
four dependent variables and their six pairwise prod-
ucts. Thus F is determined by specifying ten coef-
ficients. (Note that this framework for weight-space
dynamics does not exclude the delta rule as a possible
candidate. This is not, of course, entirely coincidental,
and the charge of using prior knowledge about learning
to constrain the evolutionary process might be leveled.
However, one advantage of the network topology we
have chosen is that a sufficiently simple good learning
procedure exists. Due to the simplicity of the proce-
dure, we can allow it as a possibility without rigging
the possibilities in too arbitrary a manner in advance.)

The genome specifies these ten coefficients directly,
with the help of an eleventh “scale” parameter. We
put

Awyy = ko(kyw,, + kaa, + k3o, + kqt.+
kswyya, + kgwyy0, + krw,, i+
kgajo; + kgaji,' + kyo0il;).

The genome consists of 35 bits in all. The first five
bits code for the scale parameter kg, which can take
the values 0, £1/256, £1/128, ..., £32, £64, via expo-
nential encoding. The first bit encodes the sign of ap
(0=negative, 1=positive), and the next four bits en-
code the magnitude. If these four bits are interpreted
as an integer j between 0 and 15, we have

a_f0 ifj=0
Ikol—{ Y-t ifi=1,...,15.

The other 30 bits encode the other ten cuefficients in
groups uf three. The first bit of each group expresses
the sign, and the other two bits express a magnitude

The Evolution of Learning: An Experiment in Genetic Connectionism

of 0, 1, 2 or 4 via a similar exponential encoding. If
we interpret these two bits as an integer j between 0
and 3, then

0
il ={ 95

For example, the delta rule could be expressed genet-
ically as:

ifj=0
if7=1,23.

11011 000 000 000 000 000 000 000 010 110 000
where the coefficients decode to
4 0000000-220
and the appropriate formula is thus

4(-—2(11'0,' -+ 2aj ti)

Aw;; =
= 8a;j(t; — 0;).

2.2.4 The Environment

Given that we are trying to evolve successful perfor-
mance on supervised learning tasks, we need an appro-
priate environment consisting of a number of learnable
* .sks. Each “task” in the environment used here con-
sists of a mapping from input patterns to output pat-
terns. As we are using single-layer networks, learnable
mappings must be linearly separable. Thirty diverse
linearly separable mappings were used. These had be-
tween two and seven units in the input patterns, and
always a single unit as output. (Any single-layer net-
work with more than one output unit is equivalent toa
number of disjoint networks with a single output unit
each, so there is no point using more than one output
unit at a time.) For each task, a network was presented
with a number of training exemplars, cach consisting
of an input pattern and associated output.

Table 1 shows eight of the tasks that were used. Each
of these was a linearly separable mapping from five
input units to a single output unit. The eight right-
most columns of the table represent the correct out-
puts for the eight different tasks. The five leftmost
columns represent the input units, common to all eight
tasks. For each tesk, twelve training exemplars were
presented, corresponding to the twelve rows of the ta-
ble. For example, the first task shown was to detect
whether the fifth unit in the input pattern was on or
off. The second task involved recognizing a single spe-
cific pattern. The otucr tasks were more complex.

Table 1: Eight Tasks from the Epvironment.

Ay 0y Ay Q4 Q5 | 1) 1) I3 Iy 15 Ig b7 Ig
1 1 111]100010T1°0
0 00 0O 0 01 001 01
0111000101010
11000]/0111011°1
1010110000011
01 100{0010T1°T1°0°1
0111110101010
0100000111101
1100110010111
1001000111011
1 0110 0 000 O0COT1O0
0001000001001

2.2.5 Evaluation of Fitness

With this diverse “environment” in hand, evaluation
of the fitness of a given learning algorithm proceeds as
follows. A number of tasks (typically 20) are randomly
selected at the start of every evolutionary run. For
each learning algorithm in the population, we measure
its performance on each task. Fitness on a given task
is measured by the following procedure:

(1) Create a network with the appropriate number of
input units for the task and a single cutput unit.

(2) Initialize the connection strengths of the nctwourh
randomly between -1 and 1.

(3) For a number of epochs (typically 10), cycle
through the training exemplars for the task, where for
each exemplar we:

(3a) Prupagate input values through the system, yield-
ing output values; then

(3b) Adjust the weights of the system according to the
formula specified by the learning procedure. on the
basis of inputs, output, training signal, and current
weights.

(1) At the end of this process, fithess on the tash s
measured by testing the network on all training ex-
emplars, and dividing the total error by the number
~} exemplars, subtracting from 1. and multiplving by
100. This yields a fitness “percentage” between 0 and
100.

Fitness of the learning rule is obtained by evaluating
its performance on cach of the (typically 20) tashs.
and taking the mean fitness over all tashs. In this
way cvery learning procedure is assigned a fitness be-
tween 0 and 100%. A fitness of 50% represents chance
performance d.c.. nu learning over the lifespan of an
individual networh, A fitness of 1007 indicates perfe t
learning. at least on the given tashs at the end of ten

85

-

86

Chalmers

epochs, each mapping is learned perfectly. It should be
noted that given the limited number of epochs, perfect
fitness seems unachievable if we are using more than
one or two tasks: even the delta rule has a fitness of
only around 98%.

There is some stochastic variation in the fitness of a
given learning rule, due to the random variation in ini-
tial weights of the networks. This variation is reduced
by maintaining a history of each specific learning rule
that appears in a given evolutionary process. If a
learning rule has appeared already in an evolutionary
run, its fitness is computed by the above procedure,
but the fitness used for purposes of selection is the
mean fitness from this and all prior appearances. This
occurs until a given learning rule has appeared fifteen
times, at which time the mean fitness is recorded for
good and never recomputed, thus saving a significant
amount of computational resources.

2.2.6 Parameters of the Genetic Algorithm

For those unfamiliar with the genetic algorithm, it
works as follows. We start with a population of ap-
propriate genomes—in this case random bit-strings of
35 bits each. In these experiments, the population size
was always 40. Every generation, each genome is con-
verted into a phenotype (here, a learning procedure),
and its fitness is measured (as outlined above). Then
we have a process of differential reproduction. Each
genome probabilistically makes copies of itself, with
the probability of reproduction being linearly propor-
tional to its fitness. This yields a new population of
40 genomes, which is then subjected to the process of
crossover: pairs of genomes are “mated” by taking a
randomly selected string of bits from one and insert-
ing it into the corresponding place in the other, and
vice versa, thus producing two new genomes. In this
experiment, 80% of the population are subject to this
process, while the remaining 20% reproduce asexually
by copying themselves directly into the new popula-
tion. “Elitist” selection is also used: the best individ-
ual in the previous population is guaranteed a place in
the new population by asexual reproduction. Finally,
in the resulting population of 40 genomes of 35 bits
each, each bit has a 1% chance of mutalion—that is.
of changing from 0 to 1 or vice versa. This process of
fitness-measurement, reproduction, crossover and mu-
tation is repeated for a number of generations, usually
1000.

Surmmary of genetic algorithm parameters. Population
= 40, two-point crossover and elitist selection are used,
crossover rate = 0.8, mutai.. rate = 0.01, number of
generations = 1000.

3 RESULTS

When the genetic algorithm is run, initial results are
as expected. At the start of the run, all individuals
present in the population have fitness between 40%
and 60%, indicating no significant learning behavior.
Instead, weight-dynamics are essentially random over
time. Within a few generations, differential reproduc-
tion begins to exploit even small differences in fitness,
and the fitness of the best individuals in the popula-
tion rises rapidly as simple adaptive mechanisms make
their way into the weight-space dynamics. After 1000
generations, the maximum fitness is typically between
80% and 98%, with an mean of about 92%. Table 2
gives the results of ten separate runs with tie same
parameters but different random seeds.

Table 2: Best Learning Algorithms Produced on 10
Evolutionary Runs.

025 0 0 0 0 0 0 04 4 0]89.6%
200 0 0 0 00O 0 2 -2 0}]9.0%
025 0-1 2 4 0 0 0 -2 4 -2|19%3%
025 0 -1 2 4 0 0 0-2 4 -21929%
025 0 01-1 01-1 44 0|8.38%
100 0 0-1 1 0 0 0 4 -4 0]976%
400 0 0 1 -1 0 0 0 -2 2 0}]983%
006 0 0 0-2-1 2 2 44 2|792%
025 0 0 2-1 0-1-1 24 0]8.8%
025 0-1-2 4 0 0 0-2 4 -2|932%

Note that even the worst learning rule has significant
adaptive ability, with a fitness of 79.2%. This rule,
then, enables a network to predict the correct output
for a given input with approximately 80% accuracy af-
ter 10 epochs of training. Other rules are significantly
better, with a mean fitness of 92.3%.

On the second of the ten runs, the genetic search pro-
cess discovered a version of the well-known delta rule
{or Widrow-Hoff rule). The learning rule here was:

= —2(2(lj0,* i 28:‘,’)
= da;(t; — o0;).

This rule unsurprisingly has a high fitness of 98.0%.
Such an event was not unusual—the delta rule was
discovered on perhaps 20% of all runs with similar pa-
rameters. In this set of ten runs, the delta rule evolved
twice (the second occurrence has a much lower value of
the “learning rate” ko, and so a lower fitness of 89.6%).
Slight variations on the rule also evolved twice, with
high fitnesses of 98.3% and 97.6%. In the seventh run

The Evolution of Learning: An Experiment in Genetic Connectionism

Average Maximum Fitness

95.00

90.00

85.00

80.00

75.00

70.00

65.00

60.00

55.00

50.00

Generation x 103
0.00 0.50 1.00

Figure 1. Evolution of Maximum Fitness in Popula-
tion.

above, the rule is
Awy = 4(o;~t;— 2a;j0; + 2a;t;)
= 8(a; ~ 0.5)(t; — 0;).

In the sixth run above, the rule is
Awij = —1(—0i +tr 40301 - 4a_,-t,»)
= 4(a; —0.25)(t; ~ 03).

The similarity of these rules to the delta rule is clear.

Typical evolutionary progress in fitness is shown in
Figure 1. This is a graph of the fitness of the best in-
dividual learning rule in the population every 25 gen-
erations over the course of the run. The figures are
averaged over the ten runs mentioned above.

3.1 EFFECT OF ENVIRONMENTAL
DIVERSITY ON THE EVOLUTION OF
LEARNING

Given the learning algorithms that this evolutionary
method produces, it is natural to ask whether the al-
gorithms are adapted specificaily for the tashs that
have been present in the envitonment during the evo-
lutionary process, or whether the algorithms are in fact
very general adaptive mechanisms capable of learning
a wide range of tasks, including tasks that were not
present during the evolutionary process. The deltz
rule clearly falls into the second category of general

adaptive mechanisms, but for other kinds of weight-
dynamics evolved by this process, the answer is not so
clear a priori.

It might well be thought that given the limited number
of tasks in the cvolutionary environment, the evolved
learning mechanisms would function well only on those
tasks. At the very least, it is plausible that perfor-
mance on such tasks might be superior to performance
on tasks not in the evolutionary environment. On the
other hand, it seems plausible that if enough tasks
are present in the evolutionary environment, then it
is unlikely that highly task-specific mechanisms would
evolve. In the design of the experiment, 20 different
tasks were used in the environment of a given evo-
lutionary run precisely because this seemed a large
enough number of tasks to minimize this likelihood.

The task-specificity of evolved learning mechanisms
can be measured by applying such mechanisms to a
selection of new tasks not present in the evolutionary
environment. In this experiment, this measurement
was made by starting from a pool of 30 tasks. On
every run, 20 of these were randomly selected and des-
ignated as part of the evolutionary environment, and
evolution proceeded on the basis of how well these 20
tasks could be learned. The other 10 tasks were desig-
nated as test tasks: at the end of an evolutionary run,
the best learning algorithm in the evolved population
was tested on these 10 new tasks, and mean fitness
was measured.

For the 10 runs outlined in the previous section, the av-
erage fitness of the 10 final learning algorithms on the
20 tasks in their evolutionary environment was 92.3%.
The average fitness these algorithms on the tasks not
present in the evolutionary environment was 91.9%.
This indicates that the evolutionary environment was
sufficiently diverse that there was no significant ten-
dency for task-specific mechanisms to evolve.

The next question of interest is that of how diverse the
environment must be to force the evolution of general
learning mechanisms. To investigate this, the number
of tasks in the evolutionary environment was varied be-
tween 1 and 20 on a number of runs. Performance of a
learning algorithm on this set of tasks is referred to as
evolulionary fitness. After 1000 generations, the learn-
ing algorithm with the highest evolutionary fitness was
removed and tested on 10 further tasks that were not
in the evolutionary environment. Performance on this
set of tasks—the test filness—indicates the generality
of the learning mechanisms that evolve. For each of
a numbcr of values of the number of tasks in the e:o-
lutionary environment, 10 runs were performed with
different randum seeds, and the results for these runs
were averaged. Figure 2 graphs (1) the average final
evolutionary fitness and (2) the average test fitness, as
a function of the number of tashs in the evolutionary
environment.

87

88

Chalmers

Fitress

] Evoluuonary Fitness
9500 A m _“\J& Test Fitness
iy v’
9000 V/ \Y i '-‘ /

8500 .

80.00 ,'j

7500 =

e,]

7000

6500

6000

5500

Number of Tasks
500 10.00 15.00 20.00

Figure 2: Evolutionary Fitness and Test Fitness versus
Number of Tasks.

The first thing to note is that evolutionary fitness is
fairly constant as a function of the number of tasks,
always somewhere around 90%. In some ways, this is
surprising—we might expect superior performance on
a smaller number of tasks. It seems plausible that it
would be easier to evolve good learning mechanisms
for one task than for 20. The reason for the observed
constancy perhaps lies with the fact that when there
is only a single task, there are more ways to learn to
perform it quite well but suboptimally. The greater
ease of finding a successful learning mechanism may
be counterbalanced by an increased chance that the
evolutionary process will get stuck in a suboptimal lo-
cal maximum, from which it is difficult to escape even
by genetic recombination.

The more important thing to note is that test fitness
does indeed decrease significantly as the number of
tasks decreases. \When there is a single task in the
evolutionary environment, test fitness averages 53%,
or only just above chance. This indicates that the kind
of weight-dynamics that evolves, while performing well
on the task in the evolutionary environment (fitness
89.7%), is not suited at all for other tasks. A task-
specific mechanism has evolved, rath :r than a general
learning mechanism. When the numoer of tasks is be-
tween 1 and 9, test fitness rises above chance but is
well below evolutionary fitness, again indicating some

degree of task-specificity in the learning mechanisms.
When the number of tasks is about 10, test fitness rises
to a value very close to evolutionary fitness, indicat-
ing that this number of tasks is sufficient to force the
evolution of general learning mechanisms.

The moral here is clear: a sufficiently diverse environ-
ment brings about the evolution of general learning
mechanisms. This makes intuitive sense. If the envi-
ronment is fairly constant, there is no need for evo-
lution to produce mechanisms that function in more
general contexts—instead, we might expect organisms
to inherit innate mechanisms adapted to that specific
environment. When the environment is diverse and
relatively unpredictable, we should expect individual
organisms to inherit adaptive mechanisms capable of
coping with a variety of different environmental fea-
tures as they arise This is precisely what we have
found here.

These results also have some bearing on the traditional
controversy between nativists and empiricists. When
the environment in these experiments was not diverse,
the mechanisms that evolved to cope with that envi-
ronment may be regarded as innate, at least in a weak
sense. These mechanisms are present specifically to
cope with certain tasks. Although the capacity to deal
directly with the tasks is not actually present at the
beginning of the lifetime of an individual, the capacity
is triggered by an expected sequence of events from
the environment on the basis of task-specific informa-
tion present in the individual’s genome. In this case,
we might say that the weight-space dynamics repre-
sent a task-specific developmental process for an in-
nate capacity, rather than a learning process. When
the environment is diverse, on the other hand, the only
mechanisms that individuals possess innately are gen-
eral learning mechanisms. In a situation familiar to
empiricists, the individual is a tabula rasa, ready to
be imprinted with whatever regularities it finds in the
environment.

We should be cautious about applying the resuits from
these limited experiments to theorizing abuut natural
biology and psychology. In particular, an important
difference is that in these experiments, genetic infor-
mation codes only dynamic properties of an individual,
and specifies no structural information about the in-
dividual’s initial state. In natural biological systems,
the genome appears to carry much information about
the initial structure of a system. This would make
some differences to our conclusions about innateness,
for example. But a general moral may still be drawn,
if strewn with caveats: innate mechanisms are likely to
be the product of a relatively constant evolutionary en-
vironment; adaptive, empiricist-style mechanisms may
be a consequence of environmental diversity.

The Evolution of Learning: An Experiment in Genetic Connectionism

4 DISCUSSION AND FURTHER
DIRECTIONS

We have seen that the methods of genetic search and
connectionism can be combined to provide a demon-
stration that the capacity for learning (adaptation
within the lifetime of an individual) may evolve in
a natural fashion under the pressures of evolution
(adaptation over the history of a population). This
double adaptive loop seems to be a powerful mecha-
nism for coping with a diverse environment. All that
seems necessary for learning to evolve in this fashion
is that the genome encode the long-term dynamics of
the information-processing capacities of an individual.
If genetic variation allows for variation in these dy-
namics, then a diverse environment will exert pressure
towards dynamics that are adaptive cver the lifetime
of an individual; eventually, we should expect learning
mechanisms to arise.

The kind of learning that we have allowed here has
been very simple, to allow a simple proof of possibility
and an illustration of the key issues. Supervised learn-
ing is a fundamental kind of learning, but it is not very
plausible biologically, and it also suffers from the prob-
lem that we may understand it {oo well. At least in
feed-forward networks, we already possess very power-
ful supervised learning methods in the delta rule and
its generalization to multi-layer networks, backpropa-
gation. It is unlikely that evolutionary methods will
allow us to improve much on these methods. So while
the methods here can yvield someinsight into the evolu-
tionary processes behind learning, they have not given
much insight into learning itself.

Other forms of learning are much less well-understood,
however, and the methods of genctic connectivnism
outlined here may provide a novel means of insight.
For example, reinforcement learning is much more dif-
ficult than the supervised variety. A number of learn-
ing algorithms are known (e.g. Barto 1983, Williams
1988), but none have been as successful as backprop-
agation has been. Using genetic search, we can in-
vestigate the space of possible dynamics of reinforce-
ment learning systems, and it is not impossible that
we might come up with novel algorithms. The exten-
sion, in principle, is a simple one. The problem of
unsuperviied learning, although more complex, could
be attacked in a similar fashion.

Another possible generalization would be to a different
class of netv. urk architectures. We could. for exam-
ple, attempt to evolve learning algorithins for recur-
rent network. Another interesting approach would be
to attempt to evolve static and dynamic properties of
a network simultaneously. Network topology, the val-
ues of certain weights, and a learning algorithm could
be simultaneously encoded by a genome, and genetic
search might fruitfully explore the interaction hetween
these factors.

There is one problem that is always lurking in the
background here, and that is the problem of the ge-
netic coding. How do we choose such a coding? Do
we try to allow for as many kinds of weight-space dy-
namics as possible, or do we constrain the space using
prior knowledge? How could we possibly find a coding
of possible dynamics that includes as possibilities all
the diverse learning algorithms proposed by humans
to date? In the experiment described in this paper,
the decision was easy. The networks were small, there
was only a certain amount of relevant information, and
it was known in advance that a simple quadratic for-
mula could provide a good learning mechanism. The
encoding of more ambitious mechanisms may not be so
simple. To attempt to evolve backpropagation by this
method, for example, we would need either a highly
complex genetic coding, or else a simple but very spe-
cific coding that was rigged in advance to allow back-
propagation as a possibility. When we do not know the
form of a plausible learning algorithm in advance—and
this is the most interesting and potentially fruitful ap-
plication of these methods - the problemn of the coding
becomes very important. Only so much can be coded
into a finite-length bit string.

One way around the limitation of prespecified codings
of dynamic possibilities would be to move away from
the encoding of learning algorithms as bit-strings, and
instead encode algorithms directly as function trees.
In a recent report, Koza (1990) has demonstrated the
potential of performing genetic-style recombination
upon function-tree specification of algorithms. This
method of “genetic programming” uses recombination
and selection in a fashion very similar to traditional
genetic methods, but with the advantage that under
evolutionary pressures such function-trees may beconic
arbitrarily cumplex if necessary. This open-cndedness
may be a good way of getting around the limitations
inherent in fixed genctic codings. Furthermore. the
method is a very natural way of encoding dynamic,
algorithmic processes of the hind we are imvestigating
here.

Even if we are forced to constrain the possible kinds of
learning algorithm, genetic methods provide a power-
ful way of scarching the spaces of such learning algo-
rithms. Unlike other phenotypic spaces such as those
of classifier systems or network topologies. the space of
learning algorithms is so poorly understood that even
the gross qualitative properties of a given algorithm
are very difficult to predict in advance. Genetic search
may allow to us uncover algorithms that humans might
never consider.

In sum, genetic connectionism provides a tool of anal-
vsis that may be of interest to biologists and psycholo-
gists, and also to computer scientists and engineers.
Genetically-based methods provide a direct way to
model evolution. a powerful method of search, and
a paradigm of emergence-over-time. Connectionist

89

90

Chalmers

methods have the potential for sophisticated forms of
learning via their paradigm of emergence-over-levels.
Combining genetic emergence-over-time with connec-
tionist emergence-over-levels seems to provide a prop-
erty that neither class of methods possesses alone: au-
tomated creativity in the design of adaptive systems.

Acknowledgements

Thanks to Liane Gabora, Gary McGraw and Bob
French for helpful comments.

References

A. G. Barto (1985). Learning by statistical co-
operation of self-interested neuron-like computing ele-
ments. Human Neurcbiology, 4: 229-256.

R. Belew, J. McInerney & N. N. Schraudolph (1990).
Evolving networks: Using the genetic algorithm with
connectionist learning. CSE Technical Report CS90-
174, University of California, San Diego.

D. E. Goldberg (1989). Genetic algorithms in search,
optimization and machine learning. Reading, MA:
Addison-Wesley.

G. E. Hinton & S. J. Nowlan (1987). How learning
can guide evolution. Compler Systems, 1: 495-502.

J. H. Holland (1975). Adaptalion in natural and ar-
tificial systems. Ann Arbor: University of Michigan
Press.

J. H. Holland (1986). Escaping brittleness: The pos-
sibilities of general purpose learning algorithms ap-
plied to parallel rule-based systems. In J. Michal-
ski, J. G. Carbonell & T. M. Mitchell (eds.) Machine
Learning II. Los Altos, CA: Morgan Kaufmann.

J. H. Holland, K. J. Holyoak, R. E. Nisbett, &
P. R. Thagard (1986). Induction: Processes of Infer-
ence, Learning and Discovery. Cambridge, MA: MIT
Press.

J. Koza (1990). Genetic programming: A paradigm
for genetically breeding populations of computer pro-
grams to solve problems. Technical Report STAN-CS-
90-1314, Stanford University.

G. Miller. P. Todd & S. Hegde (1989). Designing
neural networks using genetic algorithms. In Proceed-
ings of the Third Conference on Genelic Algorithms
and their Applications. San Mateo. CA: Morgan Kauf-
mann.

S. Nolfi, J. L. EIman & D. Parisi (1990). Learning and
evolution in neural networks. CRL Technical Report
9019, University of Czlifornia, San Diego.

J. Maynard Smith (1987). When learning guides evo-
lution. Nalurc, 329: 761-762.

D. Whitley. T. Starkweather & C. Bogart (1990). Ge-

netic algorithms and neural networks. Optiniizing con-
nections and connectivity. Parallel Compuling, forth-
coming.
S. Wilson (1990). Perceptron redux. Physica D, forth-
coming.

R. J. Williams (1988). Toward a theory of
reinforcement-learning connectionist systems. Techni-
cal report NU-CCS-88-3, Northeastern University.

Evolving Controls for Unstable Systems

Alexis P. Wieland®
Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90024-1596
alexis@cs.ucla.edu

Abstract

This paper considers the use of the genetic
algorithm (GA) to create neural networks
capable of carrying out a series of increas-
ingly difficult control problems. The con-
trol problems considered are variations of the
standard pole balancing problem, including
a variable length pole, multiple poles on a
single cart, and a jointed pole. This paper
presents these problems and their equations
of motion, discusses GA created networks for
handling these problems, and compares the
networks for control theoretic solutions. The
paper concludes that the GA and neural nets
are well suited to the difficult control prob-
lems presented.

1 INTRODUCTION

Balance and control are tasks that are often innate
to natural systems but are annoyingly difficult to de-
rive or compute. This paper considers artificial neu-
ral networks that have been created (or “evolved”)
by genetic algorithms (GA’s); two paradigms that are
loosely based on nature. These networks are used to
control a series of pole balancing problems, including
a single pole, a variable length pole, multiple poles on
a single cart, and a jointed pole.

The standard pole balancing problem (also known as
the cart-pole, broom balancer, or inverted pendulum
problem) can be solved by a very simple neural net-
work. The problem involves balancing a single rigid
pole on a wheeled cart by exerting forces on the cart,
as shown in Figure 1. This problem is of interest be-
cause it describes an inherently unstable system and
represents a wide class of unstable mechanical systems.
Unfortunately the pole balancing problem can and has

*The author is 2l50 2 part-time/on-call employee of The
MITRE Corporation, 7525 Colshire Dnive, McLean, VA
22102-3481.

Figure 1: Single Pole Balancing Problem

been solved using a single computing “neuron,” and as
such does not address some cf the more difficult areas
of control. The variations of the pole balancing prob-
lem in this paper are intended to force the creation of
networks that address these more difficult arcas.

The remainder of this introduction survexs past work
in pole balancing and provides a brief review of the
relevant control theory and GA’'s. The next two sec-
tions describe the specifics of the neural networks and
the genctic algorithms used for this work. Section 4
describes the different pole balancing problems in de-
tail, the neural networks used to solve the problems,
and compares the networks to the control theoretic
solutions. The conclusions section discusses the sig-
mficance of this work and suggests possible areas of
future study. An appendix contains the equations of
motion and parameter values for the pole balancing
problems.

91

92

Wieland

1.1 PAST WORK

Neural networks, genetic algorithms, and the pole bal-
ancing problem have each generated considerable lit-
erature. This section surveys past work in these areas.

1.1.1 Control Theory

The pole balancing problem is a standard control prob-
lem that has been examined in many control theory
texts. This makes the pole-balancing problem par-
ticularly useful as a test problem for neural networks
since it is possible to gauge the success or failure of a
network by comparing it to known solutions.

The task of balancing a single pole on a cart has been
used in introductory texts on control systems, such
as (Cannon, 1967; Friedland, 1986). These texts var-
iously consider the problem both with and without
friction, with and without time delays in the response
of the “motor,” and with both unlimited and bounded
track lengths.

The multiple pole and the jointed pole problems have
also been addressed as a control theoretic problem,
though to a much lesser extent. A control theoretic
solution to balancing multiple poles on a single cart
forms the core of a Stanford University doctoral dis-
sertation, (Higdon, 1964). This work describes the re-
gions of controllability and of stable chatter for a bang-
bang controller. Similarly, a second Stanford Univer-
sity doctoral dissertation, (Schaefer, 1965), addresses
the jointed pole problem.

1.1.2 Neural Networks

Neural networks and their predecessors have a long
tradition of addressing the (single) pole balancing
problem. The ADALINE model was trained to balance
poles using the Widrow-Hoff LMS algorithm nearly
thirty years ago (Widrow & Smith, 1963, Widrow,
1987). These simple systems were able to perform op-
timal bang-bang control using a four-component state
vector composed of the cart position and velocity and
the pole angle and angular velocity.

More recently, the now classic papers on reinforcement
learning addressed the pole balancing problem, (Barto
et al., 1983; Michie & Chambers, 1968a, 1968b). In
these papers an “adaptive critic” is used to train the
network.

Pole balancing continues to be a standard research
task for areas including training networks with a
teacher (Guez & Selinsky, 1988) and adaptively coding
sensor ranges (Rosen et al., 1990).

Recent neural network control papers that address
pole balancing consider simultaneously learning the
forward model and control (Jordan & Jacobs, 1990),
and dynamic reinforcement learning (Schmidhuber,
1990).

All of these works focus solely on the single unjointed
pole balancing problem.

1.1.3 Genetic Algorithms

GA’s have been used extensively for creating neural
networks, e.g. (Harp et al., 1989). A good overview
of evolving neural networks with an emphasis on com-
bining GA and back-propagation learning is provided
by (Belew et al., 1990).

GA’s have been used to develop single pole balancers.
There is a section in Goldberg's doctoral disserta-
tion, (Goldberg, 1983), which discusses the pole bal-
ancing problem. Also, (Koza, 1990) evolves LISP S-
expressions to solve a number of problems including
pole balancing.

1.1.4 Other Past Work

The pole balancing problem has also been used to
demonstrate the power and versatility f other com-
puting paradigms. Of particular interest is the work
on cellular automata with a steepest descent learning
procedure used to balance both a single pole and a
jointed pole, (Lee et al., 1990a, 1990b).

1.2 CONTROL THEORY

This section provides an introduction to the portions
of control theory that are of particular relevance to this
paper. Those interested in pursuing the area further
should consult a text in the area, such as (Anand, 1984;
Cannon, 1967).

In general, a control system receives one or more in-
puts and attempts to cause a physical system to pro-
duce matching outputs. Based on the inputs and the
current state of the physical system the control system
produces a control signal that it sends to the physical
system. The difference between the inputs to the con-
trol system and the outputs of the physical system
forms an error vector that indicates the success of the
controller, see Figure 2.

Exror Control -
Signal_| Control [Sypna] Physical

Target +
| System System

Qutputs
Outputs -

Measurements

Figure 2: Basic Control System

In this paper the control system is implemented by a
neural network, the control signal is a scalar specifying
the force to apply to the cart, and the physical system
is a computer simulation of the cart and pole(s). Fur-
ther, since the goal is to keep the pole(s) vertical and

Force
Neural | on Cant Computer
Network #{ Simulation 1 8 X -
4
Measurements

Figure 3: Neural Network Pole Balancer

the cart centered, the error signal is proportional to
the cart position and the pole angle(s), see Figure 3.

The state of the physical system is specified by the
measurements that it receives (and any “memory” of
past states that it may contain). This so called “state
vector” and the corresponding state space that it de-
fines is fundamental to whether the system is capable
of being controlled. The control system must receive
(or be able to compute) some minimal state vector to
be able to control the physical system.

A common but simple control scheme is proportional
control, in which the control signal is proportional to
the error signal. In neural network terms proportional
control requires only a single computing neuron with a
linear transfer function. Owing to the lack of velocity
information, proportional control generally overshoots
its target output, resu'ting in oscillations. The mag-
nitude of the proportional controller’s gain balances
the steady state error of the system against this over-
shoot and corresponding oscillation frequency. This
problem can be overcome by combining proportional
control with derivative control and/or integral control,
in which the derivative or integral of the state vector
is also used to compute the control signal. Most pole
balar.cing neural networke use some a form of propor-
tional and derivative control.

By considering the Laplace transform of ti.e system
transfer function, that is the relationship between the
desired and the actual output of the physical system,
1t is possible to derive the characteristic behavior of
the control system. The characteristic behavior of the
state variables is assumed to be periodic and is de-
scribed by a sum of complex exponentials,

z(t) = ZC;e(a_’.wi)‘

where j = v/~1 and ¢; and w; are the real and imagi-
nary parts of the poles of the transfer function.

It is helpful to plot the roots of the transfer func-
tion in the s-space defined by the real and imaginary
parts of the complex exponentials. Roots in the right
half-plane correspond to unstable vehavior in the con-
troller; the state variable z(t) grows exponentially for
o > 0. Conversely, poles in the left half plane cor-
respond to stable behavior, ie., oscillations that die
down. Figure 4 shows a plot in s-space of the roots

j(l)

Output

Figure 4: Sample Poles and Transient Response
of Second Order System.

of a second order system where both roots are in the
left half plane and the corresponding system behavior.
This is the behavior that we would hope to see from
successful pole balancers.

In any physical system there is a limit to the control
signal that can be applied. Further, it can be shown
that the fastest way to move a system to a desired
state involves only applying maximal forces This so
called bang-bang control is what is most often used by
neural network controllers.

It 1s sometimes possible to determine under what con-
ditions it is possible to bring the physical system to
the desired state. For example, with the pole balanc-
ing problem, if the cart is at the far right of the track
and the pole is leaning to the right then there is no
way for the system to recover without either hitting
the end of the track or allowing the pole to fall over.
These regions of conirollability have been derived for
the multiple pole problem and will be presented below.

1.3 GENETIC ALGORITHMS

GA’s, first introduced in (Holland, 1975), are a
stochastic search method based loosely on the process
of evolution and natural selection. With GA, the sys-
tem to be evolved is encoded in a “gene,” a string that
can represent any of the class of systems. This gene
then defines the GA search space. Sets or “popula-
tions” of these strings are created randomly and then
a process of “natural selection” and “reproduction”
continue until some goal is met.

It 1s this repeated selection and reproduction process
that gives GA’s their character. Selection of “parents”
is based stochastically on their relative “fitness” in the
population. The specific fitness measures and selec-
tion procedures that were used for this research are
described in Section 3 below.

Reproduction is based ‘on a series of “genetic opera-
tors.” The three genetic operators used in this work
are mutation, crossover, and inversion, shown pictori-
ally in Figure 5. Mutation refers to randomly chang-
ing parts of a gene. Crossover takes part of the child’s
gene from one parent and the remainder of the gene

93

Wieland

Mutation
Iil:I'lol;Mflol}* [1fr]1]ofefof1]o]

Crossover
nonnanann)EnnGeEann
4 &
A A
GEbFEEER] Rl ke lds)

Inversion

CleClel] TsT }> [ERERI

[

Figure 5: Genetic Operators

from the other parent. Inversion involves reversing the
order of a fraction of the gene. Depending on how in-
formation has been coded in the gene, inversion can
produce disastrous results, but in one case discussed
below, inversion was used successfully.

The new text by David Goldberg, (Goldberg, 1989),
is recommended to the reader interested in pursuing
genetic algorithms further.

2 NEURAL NETWORKS

Neural nets are by their nature well suited to perform-
ing control tasks. Their distributed nature allows them
to ignore noise and their general paradigm of weighing
and combining information from many sources makes
them good at integrating and filtering the many often
redundant control signals that are available.

Many controllers require memory to compute deriva-
tives or integrals. In neural network terms, this re-
quires recurrent networks, i.e., networks that contain
feedback. All the networks discussed in this paper are
recurrent.

The bulk of this research was carried out on fully con-
nected recurrent networks, shown in Figure 6. Every
neuron in these networks receives an input that is the
weighted sum of all the external inputs to the network
and the previous state of all the neurons, including
itself. A subset of the computing neurons are desig-
nated as output neurons and their outputs are used
as control signals, but aside from this designation the
output neurons are identical to the other neurons in
the network.

Arbitrarily connected networks were also considered.
Strings of structures containing from, fo, and weight
slots were used to evolve networks with arbitrarily
complex interconnections. While this approach has

Figure 6: Fully Recurrent Network Topology

been exceptionally successful for other hard problems,
(Collins & Jefferson, 1990) it was only slightly more
successful here.

Contrary to most other pole balancing work, in most
of the simulations the nodes were not limi‘ec to binary
ouiputs but could produce a range of outputs between
—J and 1. This not only gave the netwerk more in-
ternal computational power but also allowed for finer
control signals. This finer degree of contrc! was helpful
for the more difficult tasks addressed.

Some of the neurzl network design decisions were af-
fected by the desire to run the simulations on both a
conventional computer and a Thinking Machines Con-
nection Machine. Weights, thresholds and node val-
ues were stored in single bits or in eight bit bytes.
Bits .vere used to represent —1 and 1, and bytes were
used . represent the values -1, -2, &L 253
1. Thus, all 256 vzlues represeniable with one byte
were used to represent numbers in the range -1 to 1,
arranged symmetrically around zero. This represen-
tation has the interesting property of not allowing for
any representation of zero. This made it impossible
for these networks to exploit unstable equilibria since
they were always producing “noise.”

Both a sigmoid and a clipped linear transfer function
were used at different times for the neurons, see Fig-
ure 7. The performance of the two transfer functions
were qualitatively identical. Because of space and
speed considerations, the resuits presented in this re-
port were all computed using the ciipped linear trans-
fer function.

Cutput

i
H

A
_/

Figure 7. Node Transfexr Functions

)

Network's genes were represented by binary stsings.
Fully connected networks were represented by a con-
tiguous sequence of substrings for each neuron. Each
node’s substring contained one byte each for the node’s
initial value, threshold, and the weights of the connec-
tions into that neuron. A fully recurrent network with
N nodes and M inputs requires N(N + M +2) bytes.

Arbitrarily connected networks were represented by
two substrings. The first substring contained the ini-
tial value and threshold for each node and the second
substring contained an arbitrary number of 3-byte arc
specifications (representing the from, to, and weight of
each arc).

3 GENETIC ALGORITHM

GA’s are well suited to creating neural network control
systems. Many control systems require memory and
therefore recurrent neural networks. Also the “cor-
rect” control signal is not always known ahead of time.
GA’s are able to deal successfully with both of these
difficulties.

Recurrent networks pose special problems for gradi-
ent descent learning techniques that are not shared by
GA’s. With gradient descent learning it is generally
necessary to correlate causes and effects in the net-
work so that nodes and weights that cause the desired
output are strengthened. But with recurrent networks
the cause of a state may have occurred arbitrarily far in
the past. Conversely, since GA’s are only concerned
with a scalar fitness of the network, the question of
what caused any particular network state to occur is
considered only in that the resulting state is desirable.

This inherent strength of GA’s is in some ways also
their weakness. While GA’s do not rely directly on
the cause and effect relations of nodes, ignoring this
information when it does exist can make them ineffi-
cient. Fitness functions can be created to reflect much
of our understanding of what the network should be
doing, but in general GA’s ignore much useful infor-
mation.

The specific details of GA's vary widely betweea un-
plementations. The remainder of this section describes
specific fitness functions, selection criteria, and the ge-
netic operators that were used. The basic use of these
functions was introduced in Section 1.3 above.

The basic fitness of any netwotk controller is defined
simply as the time that it was able to keep the pole(s)
from falling down or the cart from hitting an end of
the track. “Falling down” means having the angle of
the pole (from the vertical) pass some cutoff value.
Cutoff angles ranging from 1° to 90° were tried, with
little qualitative difference. In general the larger the
angle the longer the evolving process took, but the
less interesting the behavior that the balancer could

Evolving Controls for Unstable Systems

«xhibit. The data and plots in this report were made
with 2a cutoff angle of 15°.

While the networks quickly evolved to keep the pole
{rom paseing the cutofl angle, it often took consider-
ably longer to discover the relevance of the ends of
the track. This was especially true for controllers that
were able ¢ balance the pole for hundreds of thou-
sands of time steps without ever approaching the ends
of the track. Therefore, fitness functions that penal-
ized the network for leaving the center of the track were
sometimes used. These functions were of the form

i
fe+1) =50 +1 - (%)

where f(t) is the fitness at time ¢, z is the distance
of the cart fron: the center of the track, L is half the
length of the track, and 0 < A < 1is a constant factor
determining the degree of penalty. Also, when one or
no inputs were provided to a network it was useful to
force the network to generate the missing state vari-
ables. In these instances a similar penalty was given
for not producing the correct value of the remaining
state variables.

Parent networks were selected based on their fitness.
The selection criteria used were determined in part by
the desire to implement them efficiently on a Think-
ing Machines Connection Machine. In standard GA,
a gene’s likelihood of being selected is proportional to
that gene’s fitness relative to the fitness of the rest of
the population. In these simulations a network was
selected based on the rank of the gene’s fitness. This
both avoids problems having to do with translation
invariance of fitness values? and allows parents to be
selected without considering individual network’s fit-
ness values once the networks have been ranked.

Two selection criteria were used in this research. In the
first method, parents were selected uniformly from a
fixed percentage of the best networks, (Jefferson et al.,
1990). In the second methed a “selection power,” o
was chosen. A real valued random number was chosen
from the range (0, N'/*), where N is the population
size, and the resulting random variable was then raised
10 the o power This allowed a continuous “knob”
vrhich conurolied the selection process, the larger the o
the inc... iincly that only the best perfor.iing networks
wouid be chosen as parents.

Crossover and mutation were used on the fuily cen.
nected recurrent networks. Crossovers were allowed to
occur anywhere within the bit-string, i.e , byte bound-

1Seclection is generally based on fitness relative to the
population’s average. This causes fitness scores to be sen-
sitive to translation; that is, if your fitness is 2 when the
population’s average is 1 you will be selected as a parent
more often than if your fitness is 1002 and the average is
1001. This sensitivity can cause problems controlling the
convergence of GA’s, particnlarly when the fitness func-
tions are heuristic measures of performance.

95

96 Wieland

aries were not respected. Mutations correspondad to
random changes in individual bits.

All three genetic operators, cressover, mutation, and
inversion, were used in the arbitrarily connected net-
works. Any crossover point in the fixed length initial
substring of the gene was at the same location in both
parents. But, in the variable length connection sub-
string, crossover points were only required to be at
the same point in a 3-byte connection specification in
both parents. In this system mutations were effected
by adding a random value in the range [-32,32] to
an individual byte. Inversion was only allowed in the
connection specification substring and inverted only
the order of the 3-byte connection specifications but
not the bytes in a specification itself.

4 POLE BALANCING

This section describes the results of the pole balanc-
ing problems and the GA created networks that solve
them.

4.1 SINGLE POLE

The traditional single unjointed pole balancing prob-
lem can be solved optimally with a proportional bang-
bang controller, (Cannon, 1967; Widrow, 1987). The
pole can be balanced by exerting a force F on the pole
given by:

F = Froz sgn(kyz + k2t + ka® + ks8), (1)
where Frnor is the maximum force, z and z are the
position and velocity of the cart?, # and 0 are the angle
and angular velocity of the pole, and ki, ks, k3, and k4
are coefficients that depend on the masses and frictions
of the system. Equation 1 is also the equation of a
single four input linear thresholding neuron. Thus, it is
possible to solve the standard pole balancing problem
with a neural network of a single neuron.

Let us consider the control theory solution to the one
pole problem. The assumptions that the mass of the
pole is evenly distributed along its length and, for this
first case, that there is no friction and that the angles
and velocities are small®, yicld the equations

(M+m)g + mlf = F 2
4 .
mis + éml?(i -+ mgld = 0 3)

wherz M and m are the mass of the cart and pole
respactively i the half length of the pole, and g =
—4.8m/s” is the aczelerstion due io gravity,

2The “dot” aotation for uime derivatives is used
throughout this peper: © = dz/dt is the velocity of the
cart, # = d?z[di? is the acceleration of the cart.

3The small argle approximation assumes that sin(d) =
8 and cos{?) =~ 1 and the small velocity approximation
assumes tkat factors containing £ and 6 can be ignored.

Siiaple proportional control of these coupled second
order equations produces an oscillatory system. The
left plot in Figure 8 shows the poles of the propor-
tional control transfer function with different amounts
of feedback. In this system the force is simply pro-
portional to the angle of the pole.# The open loop
system, that is without any feedback, contains a pole
in the right half plane. That means, not surprisingly,
tlat with no control signal the pole falls over. As the
feedback is increased, the poles of the transfer func-
tion move along the real axis meeting at the origin
and then separate along the jw axis. At this point the
pole balancer exhibits undamped oscillations.

AN V PSR SR, ¥ PSR V' I Ottt I 0

Figure 8: Proportional and Lead-Network Control for
Balancing a Single Frictionless Pole.

In a real physical pole balancing system there are de-
lays between the control signal and the application of
the force on the cart. This, with the additional dy-
namic terins, tends to meve the roots shown in the
left plot of Figure 8 into the right half plane, caus-
ing the oscillatory system to be unstable. This effect
is mitigated to some degree by friction in the system,
but in genesal a proportional controller based on the
angle alone is not stable. One method for stabilizing
this system is the lead-network technique in (Cannon
1967, pp. 703-709). The right plot in Figure 8 shows
the effective poles »f the lead-network controller. This
controller could be implemented using a four node re-
current neural netsrork.

Of more interest to this paper is the single pole bal-
ancing problem with friction and without any of the
small angle or small velocity approximations. This is
the problem that hazs been addressed by (Barto et al.,
1983) and others. The equations of motion for this sys-
tem are given by Equations 9 and 10 in the appendix.

A slightly more difficult variation of this problem uses
a two component state vector containing z and 0, but
neither £ nor #. Stable control of this system requires
the controller to compute an est.mate of the velocities.

Using GA and fully recurrent networks tiie tws in-
put single pole balancing problem requsred iess <han
a dozen generations to evolve to 2 point where most
of the controllers can balance a pole indefinitely. Fig-

*We are also assuming that the desired force never ex-
ceeds the system’s limits,

ures 9 and 10 show the maximum, median, minimum,
and a rectangle from the median of the larger half of
the values to the median of the smaller half values of
the values of the population’s fitness at successive gen-
erations. Figure 9 used a fitness function that was sim-
ply the length of time that the pole remained balanced,
while Figure 10 used a fitness function that was a func-
tion of the position of the cart. Both these simulations
used a population of 511 fully recurrent networks, each
network composed of six neurons. The selection factor
was 10.0, and there were an average of 1.5 mutations
per gene. In this and subsequent sections, a controller
is considered successful if it can balance a pole for 10°
time steps, approximately 5.5 hours of simulated time.

6
10

Scores

4
10 4-

3

10 o-
2

102]. l l
1

10

(4]
10

14
>
=

T T T

L]
o 1 2 3 4 5 4 7 8
Gezerazion

Figure 9: Evolution of a Two Input Single Pole Con-
troller, Fitness is the Time the Pole is Balanced.

106
g 10 4 E
10 4 P
10°, . E
H
¢ g
ORI W O s

-
<o

¥ =T T T

+~
o 1 2 2 4 § 6 7 8 9 W

Cceroratior

-
e

Figure 10: Evolution of 2 Two Input Single Pole Con-
troller, Fitness is Based on Position of Cart.

Since the fitness of a controller was not directly af-
fected by oscillations, it is not surprising that many of
the successful controllers allawed the pole to oscillate
during the entire simulation. In the carly stages of evo-
lution it was common to find controllers in which oscil-

Evolving Controls for Unstable Systems

lations alternately grew and were damped out. These
controllers becoming increasingly rare in later gener-
ations, presumnably because they are not stable under
GA reproduction.

Figures 9 and 10 show the difficulties of working
with the single pole problem. Generally, populations
evolved more quickly when fitness functions that pe-
nalized a network for being near an end of the track
were used. In these particular examples however, the
reverse is true. The single pole problem is so simple
that compiling statistics becomes difficuit.

Further variations of the single pole balancing problem
were considered. Controllers that required unly une in-
put, the angle 8, were evolved. These tasks required
slightly larger networks (ten neurons) and a consistent
starting location (centered on the track). Using a fit-
ness function that required two outputs, one for the
force and the other for an estimate of the current z lo-
cation, sped the rate of evolution considerably. These
networks evolved in about thirty generations. With-
out such a fitness function the task was more difficult
and required approximately 100 generations to evolve.

One further extension is to use a network with no
inputs. For this problem the cart was consistently
started in the center of thn track with the pole
vertical®> The most successful networks that were
evolved for this probiein wzre only able to balance a
pole for a few hundred time steps. Even when a fit-
ness function that recuired the network to produce an
estimate of xz and # was used, these estimates quickly
deteriorated (due largely to “round-off error™), causing
the controller to fail.

A variation of the single pole balancing problem that
surprisingly was not difficult considered variable length
poles. Two related problems were investigated. In the
first problem the length of a pole was randomly drawn
between 0.1 and 1 meters but then fixed for the du-
ration of the simulation. In the second, the length of
the pole varied between 0.1 and 1 meter in a slow ran-
dom fashion throughout a simulation. In both cases
the mass of the pole varied in proportion to the length,
that is the pole did not compress but rather the end
“evaporated.” \While this task was slightly more diffi-
cult than the standard fixed length pole problem (a 10
neuron fully recurrent network requiring 25 to 30 gen-
erations with a selection power of 4 to evolve), there
was no evidence that the network cver computed an
»stimate of the pole’s length as anticipated. Further,
most good standard pole balancers were able to bal-
ance the variable length pole systems for at least 10%
time steps.

*Note that while this is an (unstable) equilibrium pont,
because the neurons used were unable to produce an output
of zero (see Section 2) the network was not able to mahe
use of this degenerate solution.

97

98

Wieland

4.2 MULTIPLE POLES

An interesting and considerably more challenging ver-
sion of the pole balancing problem involves balancing
more than one pole on the same cart, a two pole ex-
ample is shown in Figure 11. As long as the poles
are of different lengths they will react differently to a
force applied to the cart and can be balanced simul-
taneously. The equations of motion for the multiple
pole problem are almost identical to the standard sin-
gle pole balancing problem and are shown as Equa-
tions 11 and 12 in the appendix.

Figure 11: Double Pole Balancing Problem

It is worth taking a moment to examine what is in-
volved in solving this problem. Equation 12 shows
that the angular acceleration of a pole for a given £ is
greater the more vertical the pole and is inversely pro-
portional to the length of the pole Therefore, if the
shorter pole is vertical and the longer pole is tilted,
in order to bring both poles vertical a force must be
applied so the longer pole leans over even further un-
til the faster rotating shorter pole passes it. Then,
when the shorter pole is leaning sufficiently more than
the longer pole, the opposite force is applied and both
poles are brought upright together. In order to balance
both poles, the controller must make the current state
of the system “worse” by leaning two nearly vertical
poles over. Figure 12 shows the output of a neural
network controller executing this maneuver.

It is possible to derive the conditions in which the poles
are able to be returned to their upright positions at the
origin. This region of controllability is derived for the
multiple pole balancing problem in (Higdon, 1964). A
brief summary of Higdon's observations is presented
below.

The size of the region of controllability is determined
by the ratio of the natural frequencies of the poles.
The natural frequencies of the poles are given by the
eigenvalues of the state vector’s equations of motion.

N

g 10 2

1%

2

P S J

2] .

= 1 time
° s
51 Polel = 1.0m

Pole2 = 05m

g

-
<
J

force (Newtons)
“w

ol I

-]

)
=
—
—T
=
—
=3

104

Figure 12: Control of Two Poles on One Cart

For the two pole problem these eigenvalues are ¢

Az = 3 \/-?;: 4)
M o= 3 \/—11: (5)
A = Ee (6)

M

The region of controllability can be described by a
small number of “generalized coordinates.” For the
two pole problem these coordinates are given by

1 /4 - AM . g
ya = _01_5\/_701.*.__&/_.2__,_; ([)
9 1= (m/M)
M
- pe/Mg

1l .
—0, — _‘/_ bp 4 —LL20 __ ; (8)
3V g I- (I‘c/“{)\/ ng

Figure 13 shows the region of controllability in terms
of the generalized coordinates y, and y; for different
values of A;/A;, including the two degenerate cases
A2/Xs = 1 (equal length poles, cannot be controlled
unless y2 = y3) and A2/)4 = 0. The region for a par-
ticular ratio is bounded by the symmeiric lines around
ys = y2- The important point to notice is that the
region of controllability shrinks quickly as the pole

lengths approach one another.

$The same variable names are used here as in the
appendix.

£ 16 -
1, (1- 14)

N
-0.2\

-05-\
-0.3-\ /
=10 \ Y

% "

Figure 13: Regions of Controllability for 2 Poles

Network controllers for the two pole problem were
evolved for the case where the poles had lengths of
1.0 and 0.1 meters (A2/Xs = 1/0.1/1.0 = 0.3). This
was a difficult task that required over 150 generations
of a population of 2048 ten node fully recurtent neural
networks.

Evolution was then continued while the shorter pole
was lengthened by 1% increments until it was 0.9 me-
ters long (M2/A; = /0.9/1.0 = 0.95). At this point
the region of controllability is approximately 0.1° for
vertical stationary poles. The process of slowly adjust-
ing the pole length was similar to the “shaping” pro-
cess that has been used with gradient descent learning
paradigms, (Wieland & Leighton, 1988). It was most
remarkable how slowly this shaping process proceeded.
The controllers often required as much as a dozen gen-
erations to recover from the 1% change.

It is significant that the GA’s were able to evolve con-
trollers for the two pole problem, particularly when
the pole leagths were 1.0 and 0.9 meters. The two
pole problem was the hardest control problem consid-
ered in this paper. The resulting system correspsnds
to an extremely sensitive and delicate control problem.

4.3 JOINTED POLE

The final variation of the pole balancing problem con-
sidered a jointed pole, shown in Figure 14. As with
the multiple pole problem, as long as the lengths and
therefore the natural frequencies of the poles are suf-
ficiently different it is possible to balance the system.
The equations of motion for a pole with a single joint
are shown as Equations 13, 14, and I5.

The jointed pole problem proved to be simpler to
evolve than the multiple pole problem. Unlike the mul-

Evolving Controls for Unstable Systems

Figure 14- jointed Pole Balancing Problem

tiple pole problem, the control signal that brought the
poles closer to vertical was always the correct signal to
use. For this reason it was possible to strongly favor
selecting parents from a small set of best performers.
20.to 30 generations were required to evolve controllers
for the jointed pole problem when the bottom pole was
1 meter and the top pole was 0.1 meler. A population
of 512 ten node networks was used with selecti.z com-
ing either from the top 1% of the population or with
a selection factor of 10.

5 DISCUSSION

This paper discussed a series of difficult control prob-
lems and the ways that GA’s have been successfully
used to create neural networks to solve those prob-
lems. With the sole exception of the difficult, and
to my knowledge previously untried, problem of bal-
ancing a pole while receiving no feedback, networks
were successfully created to solve each of the problems
posed.

In most control theoretic work it is necessary to lin-
earize the equations of motion by making small an-
gle and small velocity approximations. This gencrally
gives good results that are valid over the range of in-
terest. However, one advantage of evolving controllers
is that there is no restriction on the complexity of the
model that can be controlled. This work has made a
point of using accurate physical models, complete with
friction and higher order velocity terms.

In general, the classic pole balancing problem was too
simple a problem to be used with GA’s and neural
networks. The single pole balancing problem with two
inputs is slightly more difficult, requiring the network
to compute derivatives of its inputs. The next harder
problem 15 the single input problem that required the
network to estimate its current position, effectively re-
quiring, it to compute an integral, in addition to the

99

100

Wieland

derivatives. The multiple pole problem was the au-
thor’s favorite. The equations of motion are simple
and the problem can be made as challenging as desir-
able by adjusting the ratio of the pole lengths. The
equations of motion for the jointed pole problem are
considerably more complex but the underlying task
was found to be relatively simple to evolve.

The difficulty that was encountered while “shaping”
the multiple pole system points out an underlying dif-
ficulty with exclusively using GA’s for creating neural
networks. Even though small changes were made in
the task, considerable effort was required by the GA to
accommodate those changes. This is in sharp contrast
to gradient descent learning paradigms that quickly
adjust to small changes. GA's and gradient descent
learning techniques move through the neural network
search space in different but complementary ways. An
ideal system would combine GA and gradient descent
learning techniques.

This work was intended to address whether recurrent
neural nefworks could be created using GA’s to do
hard control problems. In general, once a controller
could be repeatedly evolved, questions of whether that
controller could have been created more efficiently or
with a smaller network were not pursued. Therefore
the number of generations required to create the dif-
ferent controllers should be considered only in relative
terms.

This work points to many areas for future research.
Many of the details in comparing neural network con-
trollers to theoretic control systems need to be com-
pleted. Similarly, the field of control is full of hard
problems that couid be addressed by these techniques.
Finally, numerous questions still exist about the com-
bined use of GA’s and gradient descent learning. This
paper has shown that hard control problems can be
addressed; the next challenge is to harness that power.

APPENDIX

DETAILS OF POLE BALANCING SIMULATIONS

"The equations of motion for the standard pole balanc-
ing problem are”

5 = F - ;;;sgn(ai) + F ©)

i = (:r: cosl + gsinl +) (10)

where F is the effective force of the pole on the cart
. . 0. .
F = ml0*sin0 + 3 meos0 (2= + gsin0)
4 ml

"These cquations are in a different but equivalent form
to what has generally been used elsewhere.

and m is the effective mass of the pole
m=m(l- %cos'zU)

The meaning of the parameters and the values used
during simulations of the single pole problem are
shown in Table 1.

Table 1: Symbols Used in Equations 9 znd 10

Sym. | Description | Value
z Position of cart on track. 24,24 m
[Angle of pole from vertical | [-15,13; deg.
F Force applied io cart. -10,101 A
q Gravitational acceleration. | —9.8 m/s*
[Half-length of pole. 0.5 m
M | Mass of cart. 1.0 kg
m Mass of the pole. 0.1 kg
e | Coefficient of friction 0.0005
of cart on track.
pp | Coefficient of friction 0.000902
of the pole’s hinge.

Similarly, the equations of motion for N unjointed
poles balanced on a single cart are

F - pesgn(3) + 1 F:
t = = (11)
M+ Ym

i=!

6; = —%_— (% cosf; + gsinl; + “m)(1")

where F; is the effective force from the i®
cart

polc on the

= o . 3 i0; .
Fi = ml;0Fsin0; + Ty cosO,-(,:;:_ I +gsin)
and 77; is the effective mass of the i*® pole

m; = m; (1 - :l:-coszﬁ,-)

The meaning of the parameters and the values used
during simulations of the two pole problem are shown
in Table 2.

The equations of motion for the jointed pole are not
as concise. For a pole with a single joint:

. 3
Op = Z—((g-%o(r—lbﬁ))S"‘l?a

+ (L:b;,on — T)rosl,

by
myly

~ 2,0, cos(0s - m) (13)

Table 2: Symbols Used in Equations 11 and 12

Sym. | Description | Value
z Position of cart on track. 24,24 m
[Angle of pole from vertical | [-15,15] deg.
F Force applied to cart. -10,10] N
g Gravitational acceleration. | —9.8 m/s?
A Half-length of the i*® [0.0,0.5] m
pole. L =05m
M Mass of cart. 1.0 kg
m; | Mass of the i*® pole. {0.0,0.1] kg,
m; =
e Coefficient of friction 0.0005
of cart on track.
ppi | Coefficient of friction -0.000002
of the it* pole’s hinge.

enum

ls (Bm, + my(1+ 3sin’(0, — 0s)))

8, =

(14)
where
Onum =
g [(me + my[2)sin b,
+ %mg cos O sin(0s — 0)]
— E(m, + 2my) cos b,

+ 3":;”@ (z—w=)(2 cos 0y — 1)

Im

b, . 2 L]
-4-1—-(\: —vp)” - i,) sin b cos Oy
(-1

+ Smizcosty + 1 ")cos(oa—o»)

— 2mylyfs sin(0, — ob)
_ H#ebe

- Xaum =
I = — 1
Xdcn (3)

(F — pesgn(z))(8mg, — 6my(4 ~ 3cos?(0, ~ 04)))
+ %{(mc + 2my)(2m, + my) sin(20,)
—mamy sin(20,)] 9

- 6"“

+ 2m5) cosl,

- 6"“0‘ ——2(mq + 3my)cos by

9’“0‘(md + 2m3) cos 0, cos(0, — 0)

]

Evolving Controls for Unstable Systems

+ gﬂaoa —0)
la

— 6mply03 (2m, + ms) cos 0, sin(f, — O3)
+ 6mambvby éa (:()S2 0@,
+ 3momy0y(z — vsz)sin(20;)

+ er;a [2059'(”&: — z)sinf,sin by
"'(”by +2(% — vpz)?)sin(0, — 05)] cos Oy
9;—27 b vby sin 8 cos(0, -+ 0s)
— dmg(ms + 2m5)vbyéc
3my

- —[(:: — v32)%(2m, + 4my)

+ vby(ama + 4my))sin 0,
— 2myly07(4mg + 3my)sin O

Xdgen = —3mgmycos®8y
+ 3(mg + 2mp)(2mg + myg) cos® 0,
+ 9my{2MM cos*(0, ~ 03)
—m, sin’(0, — 63)]

- 8(ma + 3mb)M
— 8(mg + mp)(mg + 3my [4)

we = &+ 21,0, cosl,

vy = 21,0, sinb,

The single (unjointed) pole problems were modeled us-
ing the Euler method and a time step on 0.02 seconds.
The multiple pole and jointed pole problems were mod-
eled with a time step of 0.01 seconds and 2 fourth order
Runga-Kutta model.

Acknowledgements

I would like to thank David Jefferson, Rob Collins,
Adam King, Russ Leighton, Dave Touretzky, and most
of all my wife Annette Mercer for their comments and
support.

The figures and plots in this report were created using
the publicly available GoodNeVS sofiware developed
by the Turing Institute, Glasgow, Scotland.

References

D. K. Anand. (1984) Intreduction to Conlrol Syslems.
Oxford: Pergamon Press.

C. W. Anderson. (1989) “Learning to Control an
Inverted Pendulum Using Neural Networks. [EEE
Control Systems Magazine, 9(3):31-37.

A. G. Barto, R. S. Sutton, and C. W. Ander-
son. (1983) “Neuronlike Adaptive Elements That Can
Solve Difficult Learning Control Problems.” IEEE

101

102

Wieland

Trausactions on Systems, Man, and Cybernetics SMC-
13:834-846.

R. K. Belew, J. Mclnerney, and N. N. Schraudolph.
(1990) “Evolving Networks: Using the Genetic Algo-
rithm with Connectionist Learning.” Technical Re-
port: #CS90-174, U. C. San Diego; Lz Jolia, CA.

R. H. Cannon, Jr. {1967} Dynamucs of Physicel Sys-
tems. New York: McGraw-Hill Book Company.

R. J. Collins and D. R. Jefferson. (1990} “An Artifi-
cial Neural Representation for Artificial Organisms.”
In R. Mianner and D. E. Coldberg (eds.), Proceed-
ings, Parallel Problem Solving from Nalure. Berlin:
Springer-Verlag (in press).

B. Friedland. (1986) Control System Desgn, An Intro-
duction 1o State-Space Methods. New York: McGraw-
Hill Book Company.

D. Goldberg. (1983) “Computer-Aided Gas Pipeline
Operation Using Genetic Algorithms and Rule Learn-
ing.” Pb.D. dissertation. Arn Arbor. University of
Michigan.

D. Goidberg. (1989) Genetic Algorithms in Scarch,
Optimization, and Machine Learning. Reading, MA.
Addison-Wesley.

A. Guez and J. Selinsky. {1988) “A Neuromorpkic
Controller with a Human Teacher.” IEEE Inlerna-
tional Conference on Neural Networks, V. 11, pp. 595-
602.

S. A. Harp, T. Samzd, and A. Guha. (1958¢) *To-
wards the Genetic Synthesis of Neural Xetworks.” In
J D. Schafter (ed.) Proceedings of the Third Inlerna-
tional Conrergence on Genelic Algorsthms. San Ma-
teo, CA: Morgan Kaufmann Publishers.

D T. Higdon. (1963) “Automatic Control of Inher-
ently Unstable Systems with Bounded Control In-
puts” Ph.D. Dissertation, Department of Aeronautics
and Astronautics. Stanford University.

J. Holland. (1975) Adeptation in Nalural and Arlifi-
cial Systems. Ann Arbor, MI: University of Michigan
Press.

D. Jefferson, R. Collins, C. Cooper, M. Dyer, M. Flow-
ers, R. Korf, C. Taylor, and A. Wang. (1990) “The
Genesys System. Evolution as a Theme in Artificial
Life” In C Langton, J. D. Farmer, S. Rasmussen,
and C. Taylor (eds.), Artificial Life II. Reading, MA.
Addison-Wesley (in press).

M. I Jordan and R. A. Jacobs. (1990) “Learning to
Control an Unstable System with Forward Modeling.”
In D. Touretzky (ed.), Advances in Neural Informa-
fion Processing Syslems 2. San Mateo, CA: Morgan
Kaufmann.

J. R. Koza. (1990) “Genetic Programming: A
Paradigm for Genetically Breeding Populations of

Computer Programs to Sclve Problems.” Techni-
cal Report. STAN-(S-50-1314, Stanford, California:
Stanford University.

Y. C. Lee, S. Qian, R. D. Jones, C. W. Barnes,
G. W. Flake, M. K. O'Rourke, K. Lee, II. H. Chen,
G. Z. Sun, Y. Q. Zhang, D. Chen, and G. L. Giles.
(1950a) “Adaplive Stochastic Cellular Automata:
Theory.” Technical Report: LA-UR 90-1229. Los

lames, New Mexico: Los Alamos National Labora-
tory.

Y. C. Lee, S. Qiar. R. D. Jones, C. W. Barnes,
G. W. Flake, M_ K. O’Rourke, K. Lee, il. H. Chen,
G. Z. Sun, Y. Q. Zhang, D. Chen, and G. L. Giles.
(1950b) “Adaptive Stochastic Cellular Automata: Ap-
plications.” Technical Report. LA-UR 90-1227. Los
Alamos, New Mexico. Los Alamos National Labora-
tory.

D. Michie and R. A. Chambers. (1968a) “BOXES.
An Experiment in Adaptive Control.” In E. Dale and
D. Michie (eds.) Machine Intelligence 2, Edinburgh.
Qliver and Boyd, pp. 137-152.

D. Michie and R. A. Chambers. (1968b) * ‘Boxes™ as
a model of pattern-formation.” Is C. W. Waddingtun
(ed.) Toweards a Theoretical Biology, vol. 1. Prolegem-
¢na, Edinburgh: Edinburgh University Press, pp. 206-
215.

B. E. Rozen, J. M. Goodwin, and J. J. Vidal. (1990)
“pdaptive Range Coding.” Neural Information Pro-
cessing Systems, 1990 {to appear).

J. F. Schaefer. {1963} “On the Bounded Control of
Some Unstable Mechanical Systems.” Ph.D. Disscria-
tion, Department of Electrical Engineering, Stanford
University.

J. H. Schmidhuaber. (1630} “Making the World Dif-
fecentiable. On Using Supervised Learning Fulls Re-
current Neural Networks for Dynainic Reinforcement
Learning and Planning in Non-Stationary Environ-
ments.” Technical Report: FKI-126.90, Technische
Universitdt Miinchen; Miinchen, West Germany.

B. Widrow and F. W. Smith. (1963) “Pattern Rec-
ognizing Control Systems.” In Compuler Information
Sciences (COINS) Symposium, 1963.

B. Widrow. (1987) “The Original Adaptive Neural Net
Broom-Balancer.” Proceedings of IEEE Intcraational
Symposium on Circuils and Syslems, pp. 351-337.

A. P. Wicland and R. R. Leighton. (1988) “Shaping
Schedules as a Method for Accelerating Learning.” In-
lernational ~weural Network Scciely Meeling.

Part IV

Temporal Processing

[V e T

BACK-PROPAGATION, WEIGHT-ELIMINATION
AND TIME SERIES PREDICTION

Andreas S. Weigend
Physics Department
Stanford University

Stanford, CA 94305, USA

Abstract

We investigate the effectiveness of connec-
tionist architectures for predicting the fu-
ture behavior of nonlinear dynamical sys-
tems. We analyze the sunspot series as an
example of a real world time series of limited
record length. The problem of overfitting,
particularly serious for short records of noisy
data, is addressed both by using the statis-
tical method of validation and by adding a
complexity term to the cost function (weight-
elimination). We show why sigmoid units are
superior in performance to radial basis func-
tions for high-dimensional input spaces. The
ultimate goal is prediction accuracy: we find
that sigmoid networks trained with weight-
elimination outperform traditional nonlinear
statistical approaches. The prediction ac-
curacy does not deteriorate when too many
input units are used. Iterated single-step
predictions are found to be better than di-
rect multi-step predictions. Furthermore, we
compare different sampling times (yearly and
monthly), investigate the effect of preprocess-
ing the data (square root and logarithmic
transforms) and compare different error func-
tions (corresponding to Gauss and Poisson
statistics).

1 INTRODUCTION

In many instances, the desire to predict the future is
the driving force behind the search for laws that ex-
plain the behavior of certain phenomena. Examples
range from Newton’s laws of motion to forecasting the
weather and anticipating currency exchange rates.

The ability to forecast the behavior of a given system
hinges on two types of knowledge. The first and most
powerful one is knowledge of the laws underlying a
given phenomenon. When this knowledge is expressed
in the form of deterministic equations that can in prin-

David E. Rumelhart
Psychology Department
Stanford University
Stanford, CA 94305, USA

Bernardo A. Huberman
Dynamics of Computation Group
Xerox PARC
Palo Alto, CA 94304, USA

ciple be solved, the future outcome of an experiment
can be predicted once the initial conditions are com-
pletely specified.

A second, albeit less powerful, method for predicting
the future relies on the discovery of strong =mpirical
regularities in observations of the system. The motion
of the planets, the small amplitude oscillations of a
pendulum, or the rhythm of the seasons carry within
them the potential for predicting their future behavior
from knowledge of their cycles without resorting to
knowledge of the underlying mechanism.

There are problems, however, with the latter approach.
Periodicities are not always evident, and they are often
masked by noise. Even worse, there are phenomena
— although recurrent in a generic sense - that seem
random, without apparent periodicities.

We use feed-forward networks of the type introduced
by Lapedes and Farber [LF87] to predict future val-
ues of time series by extracting knowledge from the
past. In distinction to previous connectionist ap-
proaches for noise free, computer generated time se-
ries [LF87, MD89)], we focus on noisy, real world data
of limited record length. In this case, the problem of
overfitting can become very serious. This problem is
approached from two angles: by using internal valida-
tion {MB90] and by the method of weight-elimination
[Rum88].

We analyze the time series of sunspots from the year
1700 to 1979, a benchmark used by many time series
analysts. We show that the network leads to better
predictions than the threshold autoregressive model of
Tong and Lim [TL80], considered the best model in a
recent review by Priestley [Pri88].

2 NETWORKS FOR TIME SERIES
PREDICTION

Three ingredients are requited tu specify a mode] fur
short term prediction of time series.

Weigend, Rumelhart, and Huberman

1. Choose an embedding for the time series {z:}:
the short-term structure! can be captured by ex-
pressing the present value z; as a function of the
previous d values of the time series itself,

RY— R
T = ast) =
¢ f(p) { (3t—laxt-—2’--',$t—d)’_’xt
The vector (%¢—1,%t-2,...,2¢-q) lies in the d-
dimensional time delay space or lag space.

2. Approximate the points {:(2:-1, Zt-2, ..., 2¢-a)}
by a smooth surface. Different approaches in time
series prediction mainly differ in the choice of
primitives (polynomials, splines, sigmoids, ra-
dial basis functions,...) and in the choice between
one global fit in lag space vs. many local fits.

3. Choose a cost function that evaluates how
well the points are approximated by the surface.
The cost function reflects the assumptions about
mesurement errors and statistics of the original
data. Assuming Gaussian errors, the cost function
is simply the the sum of the squared differences.

Then, given the embedding, the primitives and the
cost function, find the parameters for the surface that
minimize the cost function.

Once the surface has been determined, the prediction
for the value following a point in lag space is given by
the value of the surface above that point. The problem
of prediction, usually framed as eztrapolation in time,
is re-framed for time invariant systems as interpola-
tion in lag space. Following the approach by Lapedes
and Farber [LF87], we train connectionist networks on
examples from the past to find such surfaces.

2.1 ARCHITECTURE

output unit

n hidden units

d input units

Figure 1: Architecture of a feed-forward network with
one hidden layer. Units are shown as circles, connec-
tions as lines.

The networks are feed-forward networks with one hid-
den layer, as shown in Fig. 1. The abbreviation d-n-1
denotes the following network:

'The focus is on the short-term structure, since
“chaotic” systems can be predicted on short time-scales,
but not on long time-scales. This is discussed in [WHR90),
see also [CFPS86, Sch88, Ger89, FS89, Cas89, EF90).

e The d input units
Ttm1y Ttm2y 000, Tt—ds

are given the values

o The n nonlinear hidden unils are fully connected
to the input units.

e The linear oufput unit is fully connected to the
hidden units, producing the prediction Z: as the
weighted sum of the activations of the hidden
units,

¢ Output and hidden units have adjustable biases.
o The weights can be positive, negative or zero.

o There are no direct connections from input to out-
put that skip the hidden layer.

The nonlinearities are located in the activalion func-
tion (or nonlinear transfer function) of the hidden
units. We used two activation functions: logistic ac-
tivation, giving rise to sigmoid units, and Gaussian
activation, giving rise to radial basis units.

2.1.1 Sigmoids vs. Radial Basis Functions

The success in learning crucially depends on the spe-
cific functions used to construct the smooth prediction
surface above the d-dimensional input space. Specif-
ically, it is important to understand how the input
variables are treated in the two cases of sigmoids and
decreasing radial basis functions.

Sigmoids. Let &, denote the input of the network
(including bias by) into a sigmoid (or logistic) hidden
unit h,

d
€h=zwhi-’vi+bh=ﬁ1‘h-5+bh . (1)

i=1

z; stands for z;_;, the value of input 7, and ws; is
the weight between input unit i and hidden unit h.
The contribution Z -), is the projection of the input
vector £ = (3, %2, ...,z4) on the weight vector W) =
(wh1, wh2, ..., Wha).

The activation S, of a hidden unit is given by

1

1 a
5(1+tanh26) . (2)
The sigmoid performs a smooth mapping (—o0, +c0)
— (0,1). The slope of the sigmoid, a, can be absorbed
into weights and biases without loss of generality and
is set to one.

Radial basis functions. A radial basis function
(RBF) depends only on the distance n = || — ||
between the input, Z, and the center of the RBF, /i,
(also of input dimension d),

F@) = f(lz - Bl = f(n) . 3)

Back-Propagation, Weight-Elimination and Time Series Prediction

Choosing f to be Gaussian and || || to be the Eu-
clidean norm, the activation G, of hidden unit h is
given by

Gh = exp (M) = exp (M)

3 3
—203 =207},

d (2i = pni)°
= H €xp -————_20"2" . (4)
i=1

The parameter o indicates the width (or standard-
deviation) of the Gaussian. It can be interpreted as
the radius of the hyperspherical receptive field (in d-
dimensional input space) of the hidden unit. The nor-
malization of Gaussian RBFs is similar to that of sig-
moids, i.e., the activation lies between zero and one.

The crucial Jifference between RBFs and sigmoids lies
in the treatment of multi-dimensional inputs. For
Gaussian RBFs , as can be seen from Eq. (4), the in-
puts factor completely. Uniess all inputs z; are reason-
ably close to their centers py, ;, the activation of hidden
unit b is close to zero; an RBF unit is shut off by a sin-
gle large distance between its center and the input in
any one of the dimensions. This multiplicative feature
resembles a logical AND. For sigmoids, there is no such
factorization. a large contribution by one weighted in-
put in the sum in Eq. (1) can often be compensated
for by the contribution of other weighted inputs of the
opposite sign.

This difference between sigmoids and RBFs increases
with the number of input units. For one dimen-
sional cases, the difference between fitting a func-
tion with sigmoids and Gaussians is not important
[MD89, BL88]. For the Mackey-Glass time series,
Moody and Darken {MD89] used four input units. No-
tice that thousands of RBFs were required to cover the
four dimensional input space, compared to 40 sigmoid
units (two layers with 20 each) in the network used
by Lapedes and Farber [LF87] For equivalent perfor-
mance in both cases, Moody and Darken showed that
RBFs required a time series between 7 and 27 times
longer due to the larger number of parameters.?

For real world data, we assume that the data set Is
noisy and limited in size. Some of the noise can be av-
eraged out by a relatively large input dimension and
a global approximation surface. If one is interested in
optimal prediction, both the finite data set and the
noise favor sigmoid units over radial basis functions,
essentially due to the difficulty to fill high dimensional
spaces with localized functions. This was confirmed in
our experiments: none of the trials with up to 100
fully adaptive RBFs was successful on either series,

2The advantage of RBFs is computational efficiency, ob-
tained by only locally updating the relevant RBFs [MD89].
Sacrificing the flexibility of adaptive centers and widths,
the remaining problem of determiming the contribution of
each RBF can be reduced to matrix inversion [BL88]}.

whereas both series were learned reliably with signifi-
cantly fewer sigmoids.

But even for sigmoid hidden units, the number of pa-
rameters is often comparable to the number of data
points, entailing the danger of overfitting. This central
issue is addressed in the following section on training.

2.2 TRAINING

We use the error back-propagation algorithm of
Rumelbart et al. [RHWS86] to train the network: the
parameters are changed by gradient descent on the
cost, surface over the weights and biases. In the sim-
plest case, assuming a Gaussian distribution for the
errors, the cost function is the total residual variance,
or sum of squared errors, for a set of examples, S,

Z (target, — prediction;)’ = Z (zr = %), (5)

kes kes

where z (target,) is the true value of the time series
at time k, and T (prediction,) is the output of the
network for time k. This fitting error describes how
well the points {<, k € S} are approximated by the
surface over the input space.

2.2.1 Overfitting

A serious issue in the application of a network to a
problem domain is the size of the network as measured
by the number of free * ameters of the network. As
for other methods of fi m approximation, such as
polynomial, too many .. parameters will allow the
network to fit the training data arbitrarily closely, but
will not necessarily lead to optimal prediction. Al-
though there is no general method to determine the
optimal size of the network for a particular task, there
are statistical arguments which suggest that the num-
ber of training patterns required to fully determine the
weights in a network is approximately proportional to
the number of weights in the network [DSW, BH89]. A
rule of thumb often cited is that the number of weights
should be less than one tenth of the number of train-
ing patterns. With data sets of a few hundred patterns
only, this constraint is quite restrictive.

We explored two methods for dealing with this general
problem. The first method involves providing a large
number of parameters for the network, but stopping
training before the network has made use of many of
its degrees of freedom . Such networks, whose number
of weights is of the order of the number of training
examples, are referred to as oversized networks. The
second method involves a learning procedure seeking a
minimal network capable of accounting for the input
data. Both m cthods are discussed below.

107

108

Weigend, Rumelhart, and Huberman

2.2.2 Oversized Networks need Validation

To a first approximation, the gradient learning process
employed by the back-propagation procedure works as
follows: initially, the hidden units in the network all do
the same work, i.e., they all attempt to fit the major
features of the data (such as the average of the time
series). As those features are accounted for, the major
source of error in the network is determined by the sec-
ond most important feature of the training data. The
units then start to differentiate with some of them be-
ginning to fit this second most important aspect of the
data. This process of differentiation continues as long
as there is error and as long as training continues. the
effective number of degrees of freedom starts small and
gets larger and larger as training proceeds. Assuming
that sampling noise is small relative to other sources
of variation in the data, we expect that early training
will allow the network to fit the significant features of
the data. It is only at later times that the network
tries to fit the noise. A solution to the problem of
overfitting is to stop training just before the network
begins to fit the sampling noise.

The problem is to determine when the network has ex-
tracted all the useful information and is beginning to
extract noise. The first method we employ is to split
the whole available data set into three parts[MB90}.
The earlier timespan, “the past”, is divided into two
sets: a training set, used for determining the values
of the weights and biases, and a validation set, used
for deciding when to stop training. The performance
on the validation set is monitored. As long as this per-
formance on the validation set improves, training con-
tinues. When it ceases to improve, we stop training.
If we continued training, the oversized network would
start to fit the noise. The last part of the record, the
prediction set, acts as “the future”. It is strictly
set apart and never used in training. In particular,
it must not be used to determine the stopping of the
training process. Its only legitimate use is to estimate
the expected performance ‘n the future. For oversized
networks, a validation set is necessary since the noise
level in any real situation (as opposed to compater
generated data) is not xnown a priori.

2.2.3 Minimal Networks through
Weight-Elimination

The second method that addresses the problem of
overfitting assumes that the network which general-
izes best is the smallest network still able to fit the
training data. Rumelhart [Rum88] proposed a method
for accomplishing this within the framework of back-
propagation learning. It has since been used by Han-
son and Pratt [HP89)], Chauvin [Cha90], Lang and
Hinton [L1I90] and others; an alternative is presented
by Le Cun, Denker and Solla [LDS90}. The method of
weight-elimination involves the extension of the gra-
dient method to a more complex cost function. The

idea is to begin with a network that is too large for
the given problem, but associate a cost with each con-
nection. The proposed cost function is the sum of two
terms,

3 (target diction)* +A Y wh/vg
arget; — prediction; —_— .
kes o7 1w/

(6)

The first term is the standard sum squared error term
over the set of examples §. The second term de-
scribes a cost for each weight in the network and can
be thought of as a complexity term [Ris89, Che90].
The sum extends over all connections in the network.
The scale is given by wp, for activations between 0 and
1, we set wg = 1. If the weight |w,,] is large compared
to wp, the cost is A. For weights is close to zero, the
associated cost is also close to zero.

The parameter X represents the relative importance of
the complexity term with respect to the performance
term. If a given performance on the training set can
be obtained with fewer weights, this cost function will
encourage the reduction and eventual elimination of as
many weights as possible. The learning rule is then to
simply change the weights according to the gradient of
the entire cost function with respect to the weights.

1.0+ -

0.8 costof |
welght

0.6]

0.4- -

0.2+ n
derivative

0.0~ .

i] J I]] I 1 T
00 05 10 15 20 25 30 35 40 45 50

size of weight Iw / wol

Figure 2: Cost for a weight in the network (solid line)
and its derivative (gray line) with respect to the weight
jw/wol in units of A.

The part of the change due to the additional term is
proportional to the negative derivative of that term.
The complexity part of the cost function and its deriva-
tive are shown as functions of |wy, /wo| in Fig. 2. This
complexity term is most important for medium size
weights of order wg/2.

There are a few technical points in the application of
the procedure. It turns out to be useful to begin with
A at zero and to slowly increase the value of A until
performance begins to decline and thereafter increase

Back-Propagation, Weight-Eliminatior and Time Series Prediction

200
L 1go Yearly , - R 180
sunspot sunspot data and single-step prediction :
averages : 160
160 S
? i
140 o: observed data o o .9l L0
»: nefwork prediction : ! Y .
o K \ T R
120 g B ; o H b 120
i 9 x P R
» K P, - Ly
100 § o |] ? 4% %
R ‘g ;- -80
: £ I ‘ :
5 4] -60
% ; x 3 1P i 6
i) - 40
>
P~ f %i « g I \ b H 20
d 2 o
i ¥ ® ®
R e e S e ey EUr SIS S S e —t———t—t ———+——t
40 1800 year 1900 l
a5 60
22 ‘framing set’ 2 predictonset’ ———>
-3.0 j '
squared i - H] linear
25 oorl 1000 single-step residuals < : eror [75
2.0 'E M ! 13
1.5 ! =: network i i 40
’ « x: TAR-model i
-1.0 } ﬂ\ 1 % 3 : 30
0.5 - H . H X &} A ¥ g : M‘-zo
X X : * ig . 3 Xy A
Bl LT S .MA‘&A!]{M‘Z» W LTSN R T U N3 N 3
1} L} 1] 1) 1 ¥ L] 1] L 1 1 14 1 1 1 1} 1] 1 1]
1720 1740 1760 = 1780 = 1800 = 1820 = 1840 . 1850 . 1880 . 1900 1920 1940 . 1960 1980

Figure 3: The sunspot series, the single-step network prediction and the residuals.

or decrease the value of A so the error on the training
set continues to decrease at a steady, slow rate. This
is the procedure we call weight-elimination.

We are now equipped with the background to apply
connectionist networks to the real world data set of
observed sunspot numbers.

3 SUNSPOTS

Sunspots, often larger in diameter than the earth, are
dark blotches on the sun. They were first observed
around 1610, shortly after the invention of the tele-
scope [Fou90]. Yearly averages have been recorded
since 1700. The sunspot numbers are defined as
k(10g+ f), where g is the number of sunspot groups, f
is the number of individual sunspots, and & is used to
reduce different telescopes to the same scale [Mar87).
The series is shown in Fig. 3. The average time be-
tween maxima is 11 years. Note, however, that the
time between maxima ranges from 7 to 15 years.

The underlying mechanism for sunspot appearances
is not exactly known. No first-principles-theory ex-
ists, although it is known that sunspots are related
to other solar activities. For example, the magnetic
field of the sun changes with an average period of 22

years. Sunspots usually appear in pairs, correspond-
ing to magnetic dipoles. Sunspot pairs reverse their
polarity from one cycle to the next, reflecting the un-
derlying magnetic cycle.

The sunspot series has served as a benchmark in the
statistics literature. Within the time delay or lag space
paradigm, different models differ in the specific choice
of the primitives for the surface above the input space.
In the simplest case, a single hyperplane approximates
the data points. Such a linear autoregressive model is
a linear superposition of past values of the observable.

The evaluation of the network model, however, is car-
ried out by comparison to a nonlincar model. In a
recent evaluation of different models on the sunspot se-
ries, Priestley [Pri81, Pri88] favors the threshold au-
toregressive model (TAR) of Tong and Lim [TL80).
We here briefly sketch the model. For further discus-
sion see Tong [Ton83, Ton90). This globally nonlinear
model consists of two local linear autoregressive mod-
els. Tong and Lim found optimal performance for in-
put dimension d = 12. They used yearly sunspot data
from 1700 through 1920 for training, and the data from
1921 to 1979 for evaluation of the prediction.

To make the comparison between network and TAR
performance in sections 3.1 and 3.2 as close as possi-

109

110

Weigend, Rumelhart, and Huberman

0.60-Tr; ! B — N R S B AT B B I S B B WAL
.50 - A B 1t a b -0.50
L : prediction| [(1956-1979) :
0.40- . 1t § ; -0.40
0.30{t , it . 0.30
1 : without : : with
: : 1 weight- weight-
i elimination : : elimination
0.20 : 1 F : : —~0.20
i validation : :
:) average
relative
: variance
prediction 1921-1955)
- . I-QM
0.10— : . L : -0.10
0.09-] ;] S TSPt antr ettt ot eetl= 009
0.08+ i faining % i i training ~0.08
0.07= 5 T T T T T T T T T T T T T T T 007
0 1000 2000 3000 0 2000 4000 6000 8000 11000
epochs epochs

Figure 4: Learning curves of a 12-8-1 network as function of training time in epochs. The average relative
single-step prediction variances are given for the training sets (solid lines) and the early (lower gray lines) and
late prediction sets (upper gray lines) (as well as for the internal validation set for the network trained without
weight-elimination on the left side). The vertical lines (A, B, 2, b) indicate different stopping points.

ble, we use their exact data for training and evalua-
tion, their choice for the input dimension, i.e., 12 input
units, and their error measure. The only remaining
difference between the models lies in the choice of the
primitives used for the fitting of the surface.

In Section 3 3, however, we present the result obtained
by varying the number of input units from 1 to 41, and
in Section 3.4 we use monthly data.

3.1 LEARNING THE TIME SERIES
3.1.1 Validation

The learning of the sunspot series of a 12-8-1 network
is shown in Fig. 4 as a function of epochs. in one epoch
the network sees each point from the training set ex-
actly once. We define the average relative variance
of aset S as

t t R d. t. 2
arv(S) = Ekes(argel; - predic 1or;k)
2 res (target, — mean)
i1 2
== % (:z:k - xk) . (7)
ot N k€S

The averaging (division by N, the number of data
points in set S) makes the measure independent of

the size of the set. The normalization (division by
6%, the estimated variance of the data) removes the
dependence on the dynamic range of the data. This
normalization implies that if the estimated mean of
the data is used as predictor, arv = 1.0 is obtained.?

Expressed in terms of the correlation coefficient p be-
tween pairs of desired values and predictions, z and
Zr, the average relative variance is given by

arv=2(1-p) . (8)

This relationship is exact if and only if 3% =3 s
and 22 =Y 22 .

In Fig. 4, the success in mastering the training set is in-
dicated by the monotonic decrease of the lowest curve,
indicating the fitting error. The case of standard etror
back-propagation without weight-climination is shown
in the left panel of Fig. 4. To get a feeling for the
non-stationarity of the time series, the prediction set
was split in two parts, 1921-1955 and 1956-1979. On

3If the variances of the individual sets differ, a choice has
to be made. We have chosen to always used the variance
of the entire record, 6% = ¢%; = 1535. Thus, in any of the
three sets, a value of arv = 0.1 corrcsyonds to an average
absolute quadratic error of arv x o = 0.1 x 1535. =
153.5 = (12.4)* . The alternative would have been to
normalize each set by its own variance.

Back-Propagation, Weight-Elimination and Time Series Prediction

both prediction sets, the error first decreases, but then
starts to increase. the network begins to use its re-
sources to fit the noise of the training set, i.e., it starts
to pick out properties that are specific to the training
set, but not present in the prediction sets. This over-
fitting leads to deteriorated generalization.

The question to be addressed is when the training
should be stopped. Since prediction sets must not
be used for this decision, a validation set is required
for a statistically proper determination of the end of
the training process. To get a feeling for the effect
of the sampling error by picking a specific training
set-validation set combination, we investigated several
training set-validation set pairs.

The validation sets consisted of 22 years chosen at ran-
dom from the time before 1920. Those points were
removed in the corresponding training sets, reducing
their size by 10 per cunt. For the validation set of
the example shown, the average relative variance ap-
proaches an asymptotic value, it happens not to in-
crease. In this specific choice, the fitting of the noise
of this training set happens to have no effect on the
error of this validation set. Because the sunspot data
set is rather small, different pairs of training and val-
idation sets lead to results differing by factors of up
to two. These variations are large compared to the
variations due to different random initial weights and
biases.

This approach is somewhat unsatisfactory because (i),
a certain part of the available training data cannot
be used directly, (i), the results depend strongly on
the specific pair of training set and validation set, and
(111), it is not always entirely clear from the error of
the validation set when the training process should be
terminated. In the evaluation of the performance in
Section 3.2, we compare the performance for two stop-
ping points, A after 1000 epochs, and B after about
2100 epochs. As an alternative to the simple sum of
squared errors cost function that requires a validation
set, we next present the results of learuing with weight-
elimination.

3.1.2 Weight-Elimination

As in the case of back-propagation without weight-
elimination, we start with a network large er« :gh
to guarantee a decrease of the error with training.
The training curve for back-propagation with weight-
elimination is shown in the right pauel of Fig. 4.
With the same learning parameters as without weight-
elimination (zero momentum and a learning rate of
0.1), significant overfitting is avoided, even for train-
ing times four times longer. Since the entire training
set i1s used, we are relieved from the uncertainty of a
specific choice for a validation set. A decision, huw-
ever, has to be made as to when the network reaches
its asymptotic state. The performance ¢f two solutions

(@ after 3900 epochs, b after about 5800 epochs) is
compared in Section 3.2. It turns out that the exact
stopping point is not important.

In the first 5000 epochs, the procedure eliminated the
weights between the output unit and five of the eight
hidden units. Since these five units did not receive
signals in the backward pass any more, their weights
to the input units subsequently decayed. In this sense,
the weight-elimination procedure can be thought of as
unit-elimination, removing the least important units

We analyzed the specific solution of the network that
was stopped at point b and subsequently trained with
a very small learning rate for a few epochs. (Details
are given in the Appendix.) The main contribution to
the first hidden unit comes from z;_,, to the second
hidden unit from z,_», and to the third hidden unit
from z;—,. In contrast to the output weights, only
very few of the weights from the input units to the
active hidden units were eliminated. The fact that the
remaining weights are of relatively small size points to
a relatively small use of the available nonlinearities.
We show in [WHR90] how more elaborate measures of
nonlinearity can be read off the network solution.

Predictions are obtained by adding the values of these
three hidden units to the bias of the output unit. The
solution of the network can thus be interpreted as a
nonlinear transformation from the twelve-dimensional
input lag space to the three-dimensional space of hid-
den units.

3.1.3 Avoiding Bad Solutions

For sigmoid units, good solutions were obtained ir all
of the hundreds of trials with different initial random
weights and biases. We believe that this is mainly due
to choosing relatively small initial weights, a relatively
small learning rate, and a relatively large initial net-
work size.

o If small initial random weights are chosen, the sig-
moid units start out in their linear range. The
gradient descent method moves the weights at the
beginning towards the global minimum of the lin-
ear case. We chose the initial weights randomly
with magnitude less than O(1/+/n) for activations
in the unit interval, n denotes the fan-in into a
given unit.

¢ Provided the learning rate is sufficiently small,
nonlinearities are added only as needed. Typical
learning rates are /(0.1/n) - - -O(1/n). No momen-
tum term is used. The definitions of learning rate
and momentum are given in [MR88].

o Starting with oversized networks rather than with
tight networks seems to make it casier to find a
good solution. However, as emphasized above,
this approach requires a method to deal with the
problem of overfitting.

111

112

Weigend, Rumelhart, and Huberman

Since the output is real valued, numerical differences
between good and bad solutions are not as striking as
in problems requiring binary outputs.

3.2 PREDICTING SUNSPOTS

So far, we have concentrated on the learning bele.. -r
of the network for different cost functions and "« t.«
vation functions. The ultimate goal, howe ¢, i~ -
predict future values of the time series. in -, » .7
tion, we assess the predictive power of tu.. * wo--
and compare it to the benchmark model. We tits a .
lyze single-step predictions and then turn to multi-c 2
predictions.

3.2.1 Single-Step Prediction

The term single-step prediction (or one-step-ahead , -c-
diction) is used when all input units are given the ac-
tual values of the observed time series. To assess the
single-step prediction performance, we us: the the av-
erage relative variance, arv, defined in Eq. (7). It is
independent of the dynamic range of the data and of
the record length of the series, allowing for compar-
isons across different time serjes.

The solution of the weight-eliminated network with
sigmoid hidden units, explicitly given in the Appendix,
gives

arv(irain) = 0.082, arv(predict) 4y, _1955 = 0.086 .

The corresponding values for the AR model are

arv(irain) = 0.097, arv(predict),q,,_;955 = 0.097 .

As can be seen by comparing this measure for the
network with the TAR model, the single-step predic-
tion qualities of the network and the benchmark model
are coinparable. Despite this similarity, however, sig-
nificant differences will appear for predictions further
than one step into the future.

3.2.2 Multi-Step Prediction

There are two ways to predict further than one step
into the future. We first present the results of iterated
single-step predictions and subsequently turn to direct
multi-step predictions. In iterated single-step pre-
dictions, the predicted output is fed back as input
for the next prediction and all other input units are
shifted back one unit. Hence, the inputs consist of
predicled values as opposed to actual observations of
the original time series. The predicted value for time
t, obtained after I iterations, is denoted by Z,r .

The prediction error will not only depend on I but also
on the time (¢ —I) when the iteration was started. We

wish to obtain a performance measure that smooths
statistical fluctuations of a specific starting time. we
average over M starting points and define the average
relative I-times iterated prediction variance to
be

1 M \
2 PN CIEE-I) L 9)
m=1

This measure is shown as a function of the number of

srations in Fig. 5. The average is taken from 1921,
inmediately following the end of the trining period,
through 1955. The differences between the different
network solutions within each plot are not significant;
they only indicate the spread of network performances.

L i i 1 i i UL I i ;l
H

1.0

relative multi-step prediction varlance |

0.9

0.8+

0.7 4

0.6

0.5+

0.4

0.3

0.2

0.1 = ,A,B,a,b: network solutions

0.0

T T T T 7 T T 1T
8 10 12 14 16 18 20 22
I (number of iterations)

| R L
2 4 6

Figure 5: Multi-step prediction error (average relative
I-times iterated prediction variance) for the sunspot
series as function of the prediction time. Gray Ts
indicate the performance of the TAR model. A, B,
a, b refer to the different stopping points, shown in
Fig. 4. Black squares show the performance of the
weight-eliminated network given in the Appendix.

An alternative to this ilerated single-step prediction is
direcl multi-step prediction: the network is trained to
predict directly several steps ahead. On the sunspot
data set, the prediction error for direct multi-step pre-
diction was significantly worse than the error for iter-
ated single-step prediction.

]

Back-Propagation, Weight-Elimination and Time Series Prediction 113

\\

i\

W
P
,{/0

A
I"’" S

1

\

\“0‘0
— :(

Figure 6. Prediction error as function of the number of input units of the network and the predictio. .. .

the future (iterated single-step predictions).

We also investigated the qualitative long term behav-
ior of the models. The sunspot TAR model exhibits
a periodic eventual forecasting funclion for iterated
predictions [TL80], showing that TAR models can be
self-exciting. This is an important improvement over
global linear autoregressive models. We analyzed the
eventual forecasting functions of several network solu-
tions for several starting years. The whole range of
possible dynam.ic behavior - fixed points, limit cycles
and chaos ~ was displayed.

In summary, although we took extreme care not to
gain any unfair advantage over Tong and Lim [TL80)]
(by taking the same input dimension, using identical
data sets, minimizing the same sum of squared es-
rors, elc.), the multi-step predictions by iteration of
the network were found to be significantly better. On

AL
‘0“‘&\‘%&1’/"
i)
L
S

LTRSS LS
| "'l'{zll"‘)\ SN o

!

prediction
error

O
S ‘Q\/l\
'% ‘l.

Ve

K&

XL

into

average, the prediction variances of the networh were
about half the prediction variances of the threshold
autoregressive model. This concludes the comparison
with the benchmark model. In the next section, we
present the performance of the network as a function
of the number of input units. In the last sectivn we in-
vestigate preprocessing the data, compare Gauss and
Poisson assumptions for the errors and explore effects
of different sampling times.

3.3 VARYING THE INPUT DIMENSION

We varied the number of inputs units from one tu
41. The prediction error for iterated single-step pre-
dictions (for the standard 1921-1955 set) is shown m
Fig. 6 as surface above the number of input units of

114

Weigend, Rumelhart, and Huberman

the network and the prediction time into the future.

Networks with one input unit already managed to cap-
ture two thirds of the single-step variance. reducing
it to arv(predict),g,, 1055 = 0.33 . The solution was
practically linear with an offset. Networks with two
input units reduced the relative variance to 0.17; they
began to use the available nonlinearities.

With increasing number of input units, the error
reeches a roughly constant value. The performance
does not degrade with input dimension several times
larger than necessary: the network ignores irrelevant
information. This important insensitivity to the in-
put dimension is an advantage over other prediction
methods such as the simplex algorithm employed by
Sugihara and May [SM90].

To investigate this issue further, one input unit was
only presented with noise. As expected, the weights
from it to the hidden units became very small.

Numerical values of the single-step prediction error as
well as the average of the 7, 8, 9 and 10-step predic-
tion errors are given in Fig. 7. Note that the error for
single-step predictions reaches its plateau with fewer
input units than the error for iterated predictions. Due
to the very limited sample size of the prediction set,
no solid claim about the chaoticity of the sunspot data
can be made. However, the similarity of the 7, 8, 9
and 10 year predictions speaks against the hypothe-
sis that the system is chaotic, particularly when con-
trasted against the example of a computational ecosys-
tem, discussed in [WHR90], where the prediction error
increases exponentially with prediction time.

3.4 FURTHER RESULTS

We briefly summarize some further experiments on
yearly sunspot data:

¢ Preprocessing. The distribution of the sunspot
data (Fig. 3) is skewed towards small values. We
trained networks on two data sets that were pre-
processed to render less skewed distributions. z;
denoting “linear” values (after scaling into (0,1),
as explained in the Appendix), we used square
root transformed data, X; = /27, and logarith-
mically transformed data,

X¢ = 0.98 + 0.35log(z, + 0.06) .

The constant in the argument of the logarithm
was chosen to make the distribution as symmetri-
cal as possible. The other two numbers just scale
and shift {X;} into the unit interval.

It was easier for the networks to learn the square
root transformed and the the logarithmically
transformed data tl.an the original data since the
mean of both transformed sets was 0.5 as opposed
0 25 for the original data. The weight-eliminated

1.00 -
0.90 -
0.80 -

0.70 .

« W
1

0.60 -1]

0.50 -

0.20

0.10 -]
0.09 -

0.08 | R S T T T]
5 10 15 20 25 30 35 40
number of input units

Figure 7: Relative prediction variance (1921-1955 av-
erage) as function of the number of input units. Solid
line: single step prediction. Grey line: smooth average
of 7...10 times iterated predictions. 1, 7, 8, 9, *: indi-
vidual values of 1, 7, 8, 9, 10 year ahead predictions
by iteration.

networks tended to be slightly smaller. The pre-
diction errors, however, computed the space of the
original variable (after back-transforming the pre-
dictions) were slightly worse.

¢ Poisson Statistics. Replacing the assumption
of Gaussian distributed errors (variance indepen-
dent of predicted value) by assuming the errors
to be Poisson distributed (variance proportional
to predicted value) led to very similar prediction
accuracy when evaluated with the sum squared
error criterion.

Finally, we used monthly sunspot d.:ta from 1749 to
1976 (from [BCW88]) as input. Two tasks were de-
signed. (A). predict the average sunsp.t number of the
12 months following the month corresponding to the
latest input unit, and (M). predict the sunspot number
of the month following the month corresponding to the
latest input unit. Three networks were analyzed:

Back-Propagation, Weight-Elimination and Time Series Prediction

1. Task (A) alone, with a 80-20-1 network. The
performance was slightly better than the perfor-
mance obtained with yearly averages as input.

2. Task (M) alone, with a 80-20-1 network. We
found the absolute prediction variance to be the
same as in task (A).

3. Both task (A) and task (M), with a 80-40-2 net-
work. The minimum error of this network was
slightly above the sum of the squared errors of
the two previous networks: adding a related task
and doubling the resources (number of hidden
units) did not help improve the prediction. We
are presently designing an algorithm to prevent
the network from overfitting on one task while it
is still learning others.

4 SUMMARY

We investigated connectionist networks for short-term
prediction of time series. Extending the work of La-
pedes and Farber [LF87], we applied the networks to
the sunspot series. On this noisy real world time series
our networks outperformed the threshold autoregres-
sive model by Tong and Lim [TL80], considered the
best model in a recent review by Priestley [Pri88].

Several results in the domain of connectionist networks
were also obtained. We presented a weight-elimination
procedure as a solution to the related problems of
network size and overfitting of the data. It dynam-
ically reduced the number of hidden units to three.
Furthermore, we compared different activation func-
tions for the nonlinear hidden units. Whereas net-
works with sigmoid units converged reliably, serious
problems were encountered with decreasing radial ba-
sis functions. The difference in performance was ex-
plained through the different treatment of the input
variables.

Although the scope of this paper is limited to feed-

forward networks, we are presently further investigat-
ing the effects of different cost functions and of training
on additional tasks, as well as architectures for non-
stationary time series and fully recurrent networks.
Possible applications of these methods are in econo-
metrics and finance, protein sequencing, seismic data,
nonlinear predictive coding, and music.

We thank Richard Durbin and the lecturers and par-
ticipants of the 1990 Connectionist Models Summer
School for their comments, particularly in the work-
shop on time series prediction. This work was sup-
ported in part by a grant from the Office of Naval
Research (N00014-87-K-0671).

Appendix: Parameters of the Network

For the comparisons between network and TAR pre-
dictions, the number of input units was set to 12.
A network with initially 8 hidden units was trained
with weight-elimination on the sunspot data for 5800
epochs with a learning rate of 0.1 and zero momen-
tum. The weights were updated after each 20 pat-
terns, presented in random order (stochaslic approz-
imation). In order to remove effects of the specific
order of the last presentation, the network was subse-
quently trained with a learning rate of 0.0001 for
a few epochs with weight updates after each complete
presentation of the whole training set.

The weights and biases for the three remaining hidden
units are given in Table 1. The yearly sunspot values,
tabulated both in Tong [Ton83] and Priestley [Pri8§],
were linearly compressed in the (0,1) range by dividing
the raw values by 191.2 .

When simulated serially on a SPARCstation 1, the
training of the 12-8-1 network for sunspot series with
weight-elimination takes 1 minute for 100 presenta-
tions of the data. Once weights and biases are deter-
mined, predictions are extremely fast.

Table 1: Solution of the weight-eliminatad network for sunspot prediction.

output bias: 0.798

weights from hidden units to output: ~1.565 2.247
biases of hidden units: -0.858 -1.960
(hidden unit hul hu2

weights from input:

to hul 0.153 -0.646 -0.328 -1.101 ~0.060
to hu2 —-0.205 -0.094 -0.039 -0.048 1.078
to hu3 0.000 0.080 0.130 0.703 0.869
(input =12 -1 (-0 -9 -8

-1.599

-0.512

hu3)
~0.255 -0.129 0.500 0.030 0.317 -0.200 0.114
0.414 0.000 0.533 -0.168 0.995 -3.103 0.814
0.198 0.215 -=0.208 =0.160 -0.923 -0.362 -4.010
t—-7 t—-6 t-35 t-4 -3 -2 t=1)

115

116

Weigend, Rumelhart, and Huberman

References

[BCWSsS]

[BHS89]

{BL88]

[Cas89]

[CFPs86]

[Cha90)

[Ches0]

[DSW87]

[EF90)

[Fou90}

[FS89]

[Ger89]

[HP89]

[LDS90]

(LF87]

Richard A. Becker, John M. Chambers, and Al-
lan R. Wilks. The New S Language. Wadsworth
and Brooks / Cole, 1988.

Eric B. Baum and David Haussler. What size net
gives valid generalization? Neural Computation,
1:151, 1989.

David S. Broomhead and David Lowe. Multi-
variable functional interpolation and adaptive
networks. Complez Systems, 2:321, 1988.

Martin Casdagli. Nonlinear prediction of chaotic
time series. Physica D, 35:335, 1989,

James P. Crutchfield, J. Doyne Farmer, Nor-
man H. Packard, and Robert S. Shaw. Chaos.
Scientific American, 255:46, December 1986.

Yves Chauvin. Generalization performance of
overtrained networks. In L. B. Almeida and
C. J. Wellekens, eds., Neural Networks. Proceed-
ings EURASIP Workshop Portugal 1990, p. 46.
Springer, 1990.

Peter C. Cheeseman. On finding the most prob-
able model. In Jeff Shrager and Pat Langley,
eds., Computational Models of Scientific Discov-
ery and Theory Formation, p. 3. Morgan Kauf-
mann, 1990.

John S. Denker et al. Large automatic learning,
rule extraction and generalization. Complez Sys-
tems, 1:877, 1987.

Stephen Eubank and J. Doyne Farmer. An in-
troduction to chaos and randomness. In Er-
ica Jen, ed., 1989 Lectures in Complex Systems.
Addison-Wesley, 1990.

Peter V. Foukal. The variable sun. Scientific
American, 262:34, February 1990.

J. Doyne Farmer and John J. Sidorowich. Ex-
ploiting chaos to predict the future and reduce
noise. In Y. C. Lee, ed., Evolution, Learning and
Cognition. World Scientific, 1989.

Neil Gershenfeld. An experimentalist’s introduc-
tion to the observation of dynamical systems. In
Bai-Lin Hao, ed., Directions in Chaos, vol. 2, p.
310. World Scientific, 1989.

Stephen José Hanson and Lorien Y. Pratt. Com-
paring biases for minimal network construction
with back-propagation. In D. S. Touretzky, ed.,
Advances in Neural Information Processing Sys-
tems 1 (NIPS 88), p. 177. Morgan Kaufmann,
1989.

Yann LeCun, John S. Denker, and Sara A. Solia.
Optimal brain damage. In David S. Touret-
zky, ed., Advances in Neural Information Pro-
cessing Systems 2 (NIPS 89), p. 589. Morgan
Kaufmann, 1990.

Alan S. Lapedes and Robert M. Farber. Non-
linear signal processing using neural networks:

[LH90]

[Mar87]

[MB90]

[MDs9)

[MR8S]

[Prig1]

{Priss]

[RHWS6)

[Ris89]

[Rum88]

[Sch8s]

(SM9o]

[TLs0]

[Ton83]

{Ton90]

[WHR90]

prediction and system modelling. Technical Re-
port LA-UR-87-2662, Los Alamos National Lab-
oratory, 1987.

Kevin J. Lang and Geoffrey E. Hinton. Di-
mensionality reduction and prior knowledge in
E-set recognition. In David S. Touretzky, ed.,
Advances in Neural Information Processing Sys-
tems 2 (NIPS 89), p. 178. Morgan Kaufmann,
1990.

S. Lawrence Marple. Digital Spectral Analysis
with Applications. Prentice-Hall, 1987.

Nelson Morgan and Hervé Bourlard. General-
ization and parameter estimation in feedforward
nets: some experiments. In D. S. Touretzky, ed.,
Advances in Neural Information Processing Sys-
tems 2 (NIPS 89), p. 630. Morgan Kaufmann,
1990.

John Moody and Christian J. Darken. Fast
learning in networks of locally tuned processing
units. Neural Computation, 1:281, 1989.

James L. McClelland and David E. Rumelhart.
Ezplorations in Parallel Distributed Processing.
MIT Press, 1988.

Maurice B. Priestley. Spectral Analysis and
Time Series. Academic Press, 1981.

Maurice B. Priestley. Non-linear and Non-
stationary Time Series Analysis. Academic
Press, 1988.

David E. Rumelhart, Geoffrey E. Hinton, and
Ronald J. Williams. Learning internal represen-
tations by error propagation. In D. E. Rumel-
hart et al., eds., Parallel Distributed Processing,
p. 318. MIT Press, 1986.

Jorma Rissanen. Stochastic Complezity in Sta-
tistical Inquiry. World Scientific, 1989.

David E. Rumelhart. Learning and generaliza-
tion. IEEE International Conference on Neural
Networks, San Diego, 1988. Plenary Address.

Heinz-Georg Schuster. Deterministic Chaos.
VCH Verlagsgesellschaft, 1988.

George Sugihara and Robert M. May. Nonlin-
ear forecasting as a way of distinguishing chaos
from measurement error in time series. Nature,
344:734, April 1990.

Howell Tong and K. S. Lim. Threshold autore-
gression, limit cycles and cyclical data. Journal
Royal Statistical Society B, 42:245, 1980.

Howell Tong. Threshold Models in Non-linear
Time Series Analysis. Springer, 1983.

Howell Tong. Non-lincar Time Series: a Dy-
namical System Approach. Oxford University
Press, 1990.

Andreas S. Weigend, Bernardo A. Huberman,
and David E. Rumelhart. Predicting the future:
a connectionist approach. Intcrnational Journal
of Neural Systems, 1:193, 1990.

Predicting the Mackey-Glass Timeseries With Cascade-Correlation Learning

R. Scott Crowder, III
School of Comguter Science
Carncgie Mellon University

Pittsburgh, PA 15213-3890

Abstract

The cascade-correlation leamning algorithm has
been shown to learn some binary output tasks 10-
100 times more quickly than back-propagation.
This paper shows that the cascade-correlation
algorithm can be used to predict a real-valued
timeseries. Results of leamning to predict the
Mackey-Glass chaotic timeseries using Cascade-
Correlation are compared with other neural net
learning algorithms as wel. as standard tech-
niques. Lecamning speed results are presented
in terms that allow easy comparison between
cascade-correlation and other learning algo-
rithms, independent of machine architecture or
simulator implementation.

1 THE MACKEY-GLASS TIMESERIES

The Mackey-Glass timeseries is a good benchmark for
learning programs because it has a simplc definition, yet its
clements are hard to predict (the serics is chaotic.) Series
prediction has many real-world applications in arcas like
signal processing, process control, and cconomic modeling.
Another interesting feature of the Mackey-Glass problem is
that real-valued outputs are required instead of the discrete
output values found in most neural network benchmarks.
Sevcral otherrescarchers have used the Mackey-Glass prob-
Iem as a benchmark (Lapedes and Farber, 1987; Moody and
Darken, 1988; Moody, 1989). However, whilc they have
reported the quality of their solutions, the learning-time re-
sults have been reported in implementation-specific ways
that make comparisons difficult.

The Mackey-Glass Serics 1s derived by integrating theequa-

tion
daxfr} _ x[t—7]
dtl+x[t— 70
Whena =0.1,b=0.2,and 7 = 17, thcntegration produces

a chaotic tme senies (Mackey and Glass, 1977). Figure 1
shows the portion of the series used for this study.

~ bx{1).

The goal of the task is to use known values of the timeserics

-
IN
(]

Xii)

A g

|
0.80 z
!

=
“17-

s
Y o

0.60 ij ¥

0.40

0.20, 700 200 300 200 500

Timo

Figure 1: The Mackey-Glass Timeseries with a = 0.1,
b=02,and+ =17

up to the pont x = ¢ to predict the value at some poimnt in
the future x = ¢ + P. The standard method for this type of
prediction is to createc a mapping f from D points of the
timeserics spaced A apart, Le., (x[t — (D — 1)A],....x[t -
Al x[1)), to a predicted futurc point x{t + P]. To allow
comparison with carlier work (Lapcdes and Farber, 1987;
Moody and Darken, 1988; Moody, 1989), the values A =6
and D = 4 werc used. Previous studics have used prediction
interval values of P = 6 and P = 85. The choicc ot P =85
is greater than the characteristic period of the serics (fszr =
50). Predictions with P > (... have failed for standard
methods like linear predictive coding and Gabor-Volterra-
Wicner polynomial expansion (Gabor, 1960). However,
by choosing P = A it is possible to predict the valuc of
the timeseries at any multiple of A timesteps in the future,
by feeding the output back into the input and iterating the
solution. We choose to use P = A = 6 for study sincc
results can be compared with previous experiments where
P = 6. By Herating the solution to I = 84, results may be

117

—_—— —

118

Ocipurs
o o
i I
3
Ouiput Units .
:
Hidden Unit 2 L
Hidden unit 1 @ T l
J 5 e ‘,!'ﬁ
| !
o— b il XX
Inpas © —4> < * ¥
o5 — ¥ T

Crowder

compared with previous P = 85 studices.

Finally, a measure of performance must be specified. All
error measures will be reported using the non-dimensional
errorindex/, defined as therms error divided by the standard
deviation of the target series (Lapedes and Farber, 1987).

2 THE CASCADE-CORRELATION
LEARNING ALGORITHM

Cascade-correlation is a supervised lcaming algorithm
which builds a net as part of the leaming process (Fahiman
and Lebiere, 1990). The algorithm consists of two phases,
output unit training and hidden unit training.

The output units reccive input from all input and hidden
units (initially just the inputs, as there are no hiddens.) In
the first phase, output unit weights are trained to minimize
the usual sum squared error measure, with error defined
as the difference between the actual output values and the
desired outputs. Once this traxmng process levels off, a
final epoch is run to record the residual error (difference
between actual and desired outputs) for each umt on each
training pattern. At the completion of output trasmng, if
the sum squared ervor remains above a certan threshold, a
new hidden unit is inserted with weights determined by the
hidden unit training phase.

During hidden unit training, a pool of potential hidden units
is trained in parallel. Multiple candidates mimimize the
danger that an unfortenate choice of random mitial weights
will keep the new unit from contnbuung to the solution.
The cangidate hidden umits receive snput from both the
input units and all previously-created hidden units. Thus,
the hidden units form a cascade, as shown mn Figure 2. The
cascade architccture allows umits to develop sophisucated
higher-order representations.

-1 5—

Figure2: The Cascade Architecturcafteradding two hidden
units. The vertical fines sumall incomingactivation. Boxed
conncections arc frozen when the hidden unit is tenured, X
connections are trained repeatedly.

One problem with standard backprop is that when more
than on¢ hidden layer is added, leamning seems 1o slow cx-

ponentially with the number of hidden layers. The cascade
architecture realizes the benefits of multiple layers with-
out suffering their exponcential slowdown in Icarning speed,
because only a single layer of weights is trained in cach
phase.

Candidatc hiddenunitsare trained tomaximize S, thesumof
the magnitude of the correlation between the output values
for cach pattern and the residual error from the previous
output training phase. The measure § is defined as:

5= 1> Vo~ W(Epo~Eo)
e lp

where o ranges over outputunits, p ranges over pattems, V;,
15 the candidat. unit’s output valuc foi pattem p, and £ »
is the residual error of output unit o on pattcm p. ¥ and £,
are average values over all patterns.

Each candidate unit is trained scparately. After the train-
ing reaches an asympiote, the candidate with the highest
correlation score S is added to the network and tenured (its
weights are frozen.) The network then repeats the output
training phase. The two phases continuc to sltemate urti.
the overall output error is small enough or the rxning rur
is declared a failure (a rarc occurrence).

Since in both phases, the units being trained are directy
connected to their inputs (no intervening layers with en-
frozen weights), any gradient descent leaming method may
be used The current implementation uses the quickprop
algorithm (Fahlman, 1988) because of its speed. The only
restriction placed on the hidden unitsquashing function by
the quickprop algorithm is that it must be differentiable.
Most previous studies have used sigmoidal hidden units,
but gaussian hidden units are possible, and in fact proved
most effective for this problem.

2,1 REAL-VALUED OUTPUTS

All previous studies of cascade-correlation Ieaming uscd
tasks requiring binary outputs. For these tasks, sigmoidal
outputunits are thelogical choice. However, forreal-valued
problems the distribution of desired outputs is often gzus-
sian rather than binomial, and the range of desired outputs
may not be well-definerd. The selection of a lincar output
unit addresses both prouiems by allowing cqual likelihood
for any oulput value and providing an unconstrained range.
When the desired output distribution is bipolar, then sig-
moidal output units yicld a model that produces a maximum
likclihood estimate for the cormrect weights. When the de-
sired distribution is gaussian, lincar units yicld 2 maximum
likelihiood estimate.

Carc must be tzken when using hincar output units in 2
constructive algonthm such as cascade-correlauon. The
error response of networks with sigmoidal outputs is fairly
resistant to the addition of new units, because Zo/Gret is
very small for units whose outputs are close to 0 or L.
Therefore new hidden units tend to move the undecided

Predicting the Mackey-Glass Timeseries with Cascade-Correlation Learning

outputs toward the correct response, but have a small affect
on outputs thatare already giving the correct response. Now
units can be added without drastically changing the part of
the error space that must be explored duning the output
training phase. On the other hand, Jo/Onet 1s constant for
linear units. Any new hidden unit will effect all outputs
equally. If the output weight initially assigned to the new
unit s too high, the network may move to a completely new
part of error surface. This can result 1n incomplete learning
during the output phase, which will require the addition of
extra hidden units to bring the solution back on track. This
problem can be avoided by using a very small initial output
weight for new hidden units,

3 BENCHMARK RESULTS

3.1 TRAINING RESULTS

The problem was run 50 times using cascade-correlation
with gaussian hidden units selected from a pool of 8 candi-
date units. The network was trained until the error index /
dropped to 0.025. The size of networks constructed ranged
from 23 to 39 hidden units, with an average of 31.5 and
median of 32 units, Figure 3 shows the distribution of the
network sizes.

Hidden { Number of
Units | Trials
23 1 o
24 0
25 1 o
26 1 o
27 2 e
28 2 ee
29 3 eeoe
30 4 oo o0
31 7T eoeeecee
32 10 eosec0eovecece
33 6 esee e
34 5 ceeeoe
35 4 oo oo
36 2 ee
37 1 o
38 0
39 1 o

Figure 3: Distribution of Network Sizes

The median size network had a total of 693 adjustable pa-
rameters, or about 28% more than the 40 hidden unit net-
work uscd by Lapedes and Farber. Thecascade architecture,
which specifies that each unit 1s connected to all previous
umts, accounts for the higher number of parameters even
thought the units count is smaller.

The simulations requircy < ¢ average of 3875 epochs (in-
cluding both output and hicden unit phase epochs). The
number of epochs obvionuly vaned with the number of

units used. The number of epochs per unit averaged 123,
with smaller ncts requiring slightly more ¢pochs per unit
than larger ones. Epochs are a good measure of learning
performance for networks with a fixed architecture. Un-
fortunately, the notion of an “cpoch” is more complicated
with cascade-correlation. input epochs train a pool of fr h
candidate units, while output epochs retrain the input con-
nections of the output umnits. In both cases the number of
weights being adjusted increases as hidden units are added.

A better objective measure of performance for network
growing algorithms like cascade-correlation is the number
of multiply/accumulates performed during the activation
feed-forward and error back-propagation steps (Fahiman
and Lebiere, 1990). This measure does ignore some or the
computation performed during the simulation, but it is a
better measure of amount of work required than epochs or
machine running time.

Cascade-correlation constructed successful networks using
between 141 and 360 million muluply/accumulates. The
average trial requared 265 million multiply/accumulates to
solve the task,

Precise comparisons between cascade-correlation’s learn-
ing speed and learning speed of the other algorithms are not
possible. Previous researchers have reported their learning
speed results in terms of computation time, because it is im-
possible to separate contributions from the algorithm, the
hardware, and the details of the coding.

3.2 NETWORK BUILDING

Figures 4 and 5 show the building of one 25 hidden unit
network. Each pair of figures shows the output of the
network developed so far compared with the goal on the
left and the o “tput of the next hidden unit compared to
the error of the y.~existing network on the right. Figure 6
illustrates how the addition of each unit helps to reduce the
overall error in the network output.

The first few hidden units seem to be attempting to mirror
the shape of the network error curves. After addition of
the fourth hidden unit, the units begin lose their smooth
response. This scatter is probably a result of using the co-
variance mecasure S to train the candidate units instead of a
true correlation measure.

The current training strategy rewards units with extreme
values, the sign of the (V, — V) term is more important than
the actual vnit output, V,. In fact the highest possible S
would be awarded to a unit that output 1 whenever (£, -
E,) is positive and O when (Epo — E,) is negative (or visa
versa). This strategy works well in networks with sigmoid
output units because 1t is not possible to overshoot the goal
value. In lincar output nctworks a more graded response
would be beneficial. Use of a true correlation measure for
hidden unit training would encourage the development of
units with a more graded output.

The contribution of cach unit tc reducing the overall net-

119

120 Crowder
§_1.40
= - §' + Hidden Unit 1's Qutput
% A ; ~ 0 Hidden Unit Net's Errors X 2
1.20 g
= S
3 . . B
':o 1.00p, . &
1.00 0.75¢t - N A .t .
osof + ° S0 -,
ozst °. .. .'-. " . .
0.80 0.00 eens® -
. 170 190 210 230 250 270
,_% 0.75} ime
0.60 E 0501
§ o.2sf [- s ST
+— Goal 0.00f—x— T T s LA
+ Net with 0 Hidden Units . S v - M A b
0.40 025k -7 w5 s O
s " v vv~ -
<0.50r1
0.2 =-0.751
* 970 180 180 200 210 220 230 240 250 260 270
Time ~-1.00*
§.1.4O
= §' « Hidden Unit 2's Qutput
% ; ~ 1 Hidden Unit Net's Errors X 2
1.20 g
< F:
2 1o00p - o .
1.00 °.75r : T
osof o+ . - - . .
oast. . . RN
0.80 .00k -
: 170 190 210 230 250 . 270
g o.75} Time
V]
0.60 \ § 0.50,
5 o.2s
— G ! = ool T oy
. » . e s .';b"' — as— oA
0.40 Net with 1 Hidden Unit - - e
-0.251
-0.80f
0.2 =, 78
' 970 180 190 200 210 220 230 240 250 260 270
Time =1.00
§1.40
= Hidden Un)® &' Outgut o
% 4 Flidden Unt *“ar e Errger 7, 2!
1.20 " ——
=
1.00 R .
0.80 .) -
210 230 250 270
Timeo
0.60
+— Goal 0.001—== ey N -
0.40 + Netwith 4 Hidden Units - ~ e Tt d
) -0.251
-0.50
0.2 -0.75f
° ?70 180 190 200 210 220 230 240 250 260 270

Time -1.00

Figure 4: Network Evolution for a 25 Unit Network.

Predicting the Mackey-Glass Timeseries with Cascade-Correlation Learning

1.00

0.80

0.60
s Goal
« Netwith 9 Hidden Units
0.40
0.2970 180 190 200 210 220 230 240 250 261(2 270
imo

§1 40
k-3
% 1.20
=
1.00

0.80

0.60

L-—-- Qoal J
. 1 1 i
0.40 Net with 19 Hidden Units

0.20,5 1680 190 200 210 220 230 240 250 269 270
me

1.40

Network Output

1.00

0.80

0.80

—s Goal _J LY
0.40 « Netwith 24 Hidden Units

0'2970 180 180 200 210 220 230 240 250 2619_ 270
mo

Network Error

g
=

2

Hdden Unit Output

Hdden Unit Output .

Hdden Ut Outpt .

1.00
0.75
0.50
0.25
0.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.785

-1.00"

1.00
0.75
0.50
0.28
0.00
n.75
0.50
0.25
0.00
~0.25

-0,50f

-0,75
-1.00

« Hidden Unit 10's Output
+ O Hidden Unit Not's Errors X 4

190 210 230 230 270
Time

« Hidden Unit 20’s Qutput
» 19 Hidden Unit Net's Errors X 10

+« Hidden Unit 25's Output
~ 24 Hidden Unit Net's Errors X 20

Figure 5: Network Evolution for a 25 Unit Network (Continued).

121

122

Crowder

work error, /, is show in Figure 6. As expected, the first
units, which mirror shape of the individual £, 5, reduce [the
most. Itis alse interesting to note that the addition of each
new hidden unit allows the network to reduce [log-hnearly.

)

1.00

I%g(Enmor Index

H
o

0.16

0.086

0.03

0.0, € 10 15 20 25
Number of Hidden Units
Figure 6: Network Error as a Function of the Number of
Hidden Units

3.3 GENERALIZATION RESULTS

Generalization was measured by using each network to pre-
dict 500 points inmediately following the training set. Gen-
eralization results for cascade-correlation are so far not as
good as the best results for backprop reported by other neu-
ral network researchers. The results for P = 6 are presented
in Table 1. The results show that all methods, except for the
linear predictive model, are able to generalize fairly well
for a small time into the future. The more challenging test
of P = 85, Table 2, show that the neural-network techniques
outperform standard techniques.

Table 1. Generalization Result Companison for P = 6

Method Training I
Cases
Cascade-Correlation 500 0.06
Back-Prop 500 0.02
6th-order polynomial 500 0.04
Linear Predictive Method 2000 0.55

The poor generalization performance of cascade-correlation
compared to other ncural network techniques is probably
related to the choice of S used to train hidden units. A more
effective training measure would result in smaller networks
being buiit. There is evidence that the networks created by
cascade-correlation are suffering from over-training. The
gencralization error for the networks reaches a minimum at

Table 2: Generalization Result Comparisons for P = 85.
Results for first four methods are generated by iterating
the solution at P = 6. Results for Localized Receptive
Fields(LRF) and Multi-Resolution Hierarchies(MRH) are

for networks trained for P = 85.

Method Training !
Cases

Cascade-Correlation 500 0.32
Back-Prop 500 0.05
6th-order polynomial 500 0.85
Linear Predictive Method 2000 0.60
LRF 500 0.10-0.25
LRF 10000 0.025 - 0.05
MRH 500 0.05
MRH 10000 0.02

about 20 hidden units and then increases sightly as each ad-
ditional unit is added. The best generalization performance
observed was Ip.g = 0.04 and Ip.gs = 0.17.

4 Conclusions

Past studies have shown that for some binary output
tasks cascade-correlation learning is much faster than stan-
dard network learning algorithms. This study shows that
cascade-correlation is capable of solving a problem that rc-
quires real-valued outputs. Past neural network rescarchers
have used the Mackey-Glass task to test their learning al-
gorithms. Learning speed comparisons with these studies
are not possible because their results are stated in machine
specific terms. A machine and simulation-implcmentation
independent measure of learning speed is given so that
future researchers can compare results against cascade-
correlation. However, the generalization performance of
the networks created by cascade-correlation is not as good
as networks created by other learning algorithms. Future
work on cascade-correlation should focus on using a true
correlation measure to train new hidden units instead of the
measure used in the current implementation.

Acknowledgments

I would like to thank Scott Fahlman for guidance and in-
sights that have helped to shape this work, and Dave Touret-
zky for his thoughtful comments and patience while editing
this paper. This work was sponsored 1n part by the National
Scicnce Foundation under Contract Number EET-8716324
and by the Defense Advanced Research Projects Agency
{DOD), ARPA Order No. 4976 under Contract F33615-87-
C-1499 and monitored by. Avionics Laboratory, Air Force
Wright Acronautical Laboratories, Aeronautical Systems
Division (AFSC), Wright-Patterson AFB, OH 45433-6543,

Predicting the Mackey-Glass Timeseries with Cascade-Correlation Learning 123

References

S. E. Fahlman. (1988) Faster-Learning Variations on Back-
Propagation: An Empirical Study. InD. Touretzky, G. Hin-
ton, and T. Sejnowski (eds.), Proceedings of the 1988 Con-
nectionists Models Summer School, 38. San Mateo, CA:
Morgan Kaufmann,

S. E. Fahlman & C. Lebiere. (1990) The Cascade-
Correlation Learning Architecture. In D. S. Touretzky
(ed.), Advances in Neural Information Processing Systems
2, Morgan Kaufmann. A longer version is available as
Technical Report CMU-CS-90-100, Carnegie Mellon Uni-
versity, School of Computer Science.

D. Gabor, W. P. Wilby, and R. Woodcock. (1960) Proceed-
ings IEEE, 108B: 422,

K.J.Lang & M. J. Witbrock. (1988) Learning to Tell Two
Spirals Apart. In D. Touretzky, G. Hinton, and T. Sejnowski
(eds.), Proceedings of the 1988 ConnectionistsModels Sum-
mer School, 52. San Mateo, CA: Morgan Kaufmann,

A. S. Lapedes & R. Farber. (1987) Nonlinear Signal Pro-
cessing Using Neural Networks: Prediction And System
Modeling. Technical Report, Los Alamos National Labo-
ratory, Los Alamos, New Mexico.

M. C, Mackey & L. Glass. (1977) Oscillation and Chaos in
Physiological Control Systems. Science, 197:287.

J. Moody & C. Darken. (1988) Learning with Localized
Receptive Fields. In D. Touretzky, G. Hinton, and T. Se-
jnowski (eds.), Proceedings of the 1988 Connectionists
Models Summer School, 133. San Matco, CA: Morgan
Kaufmann.

J. Moody (1989) Fast Learning in Multi-Resolution Hi-
crarchies. In D. S. Touretzky (ed.), Advances in Neural
Information Processing Systems I, 29. San Mateo, CA:
Morgan Kaufmann.

Learning in Recurrent Finite Difference Networks

Fu-Sheng Tsung
Computer Science & Engineering
University of California, San Diego
La Jolla, CA 92093
tsung@cs.ucsd.edu

Abstract

A recurrent leaning algorithm based on a finite
difference discretization of continuous equations
for neural networks is derived. This algorithm
has the simplicity of discrete algorithms while
retaining some essential characteristics of the
continuous equations. A problem arising from
using a discrete algorithm to learn sine wave
oscillations is described and shown to be solved
by this algorithm. This example explains a
limitation of the discrete algorithm when
learning to approximate continuous behaviors.

1 A FINITE DIFFERENCE
ALGORITHM

The following coupled differential equations, with slight
variations, have been widely used for continuous neural
networks (for example, sce Hopfield (1984), Pineda
(1987), Pearlmutter (1989)):

rk%-;ﬁ(rh-yk O+ fig @) (12)
X O = 3, wrj i () (1b)
]

where yg (t) is the output of the unit & at time ¢, and 7y is
the time constant!. wy; are the weights (coupling) from
unit j to unit ; together with the transfer function f{) they
specify the interaction among the units in the network. If
no restrictions are placed on wgj, then (1) may be an
arbitrarily connccted network. In particular, if cyclic

! Time constants determine the time scale of the system. One
way to see this is by considering (1a) in the absence of f{).

There the solution is y=Ce’Y-1/1) for some constant C. That
is, after each time period of 7, y decays by l/e.

124

connections exist among the network units, then such
networks are called “recurrent nets”. Recurrent nets are
more powerful than feedforward nets (though perhaps not
as efficient at certain tasks). One of the most important
properties of recurrent nets is their potential to model
temporal processes with feedback.

Gherrity (1989) and Pearlmutter (1989) have derived
different learning algorithms for fully recurrent networks
defined by continuous equations such as (1). On the other
hand, Williams & Zipser (1989) derived a recurrent
algorithm called RTRL (real-time recurrent learning)?
based on discrete-time network dynamics, which is more
common for feedforward networks. That is, the network
dynamics is defined by

WD =fRO) x=T, wipy; @
J

In both Gherrity (1989) and Pearlmutter’s (1989)
algorithms, the error gradients arc calculated from-the
differential equations. The resulting equations then must
be numerically integrated for simulation. In this paper we
adopt a different approach, by first discretizing the
differential equations, then calculating the gradients from
the discretized cquations. The resulting network can be
considered as a cross between continuous and discrete
nietworks. One advantage of this approach is that the
learning algorithm is as straightforward as the RTRL
algorithm, while the network retains some essential
characteristics of the continuous network.

Among the clementary finite difference schemes for
discretization, we consider the most basic one, the first
order forward difference approximation:

AdY% (n ~ - AV Yi(+AD) = yi(0)
Te——) = 17—~ () =17 et
k ! =1 Ar 0= A

2Which has been independently discovered several times, sce
(Williams & Zipser, 1990) for references.

where At is a small, positive number3.

Substituting the RHS (right-hand-side) of (3) into the
LHS of (1a), and rearranging terms, we get:

yk(r+Ar)=(1—%§)yk<r>+%ff(xk(r» @

To distinguish (4) from the continuous networks (1) and
discrete networks (2), let us call networks defined by (4)
“delta net”. While (4) is derived from (1), it is related to
the discrete equations (2) as follows. For numerical
integration, it is normally desirable that the integration
step At be small compared to the time constant 1.
However, in the limit that At=t, (4) reduces to (2). That
is, we may consider discrete nets as a special case of delta
nets, and that each iteration of the discrete net corresponds
to jumping one time-constant forward in continuous time.

There is an intuitive interpretation for (4) from the
discrete-time point of view. For example, if all the time
constants are 1 and At is 0.1, then at each iteration step,
the new activation for a unit is formed by (1-At) or 90%
of the original activation, plus 10% of the contributions
from the presynaptic units. Thus each unit decays
exponentially, consistent with the original continuous
system.

Having observed the similarity between (2) and (4), we
proceed to derive a leaming algorithm for the delta net in
exactly the same way that Williams & Zipser (1989)
derived the RTRL algorithm. If the desired output for unit
k at time ¢ is dj (1), then define the error of the system to

be
- — w2
E @) _.;_ kz Ldk() - yi(0])

Weights are modified 1n proportion to the error’s negative
gradient with respect to the weights themselves:

3E E 9
AWij(l):"ng”?j(t):"n% aa_yk'a_zi ® ©

Here 715 a positive proportionality constant (the learning

rate). By (8), the first term in the summation is simply
3B —_{dhlt) - y40)

oy}

The second term in the summation is calculated
recursively, using (4):

Kerar) = Dk (A =(1-ALypk
pit+A1) i (+An=(1 Tk)p,,(t)+

3 Also known as Euler's method. This approximation can be
obtained directly from the mathematical definition of
derivatives.

Learning in Recurrent Finite Difference Networks

AL (/) 3, wrap i)+ Sikyj() ©
k I

where 8, is the delta function. The learning algorithm is
thus

wijle+ a0 =0T, (de - y) K (0+41))
k

The only difference between the delta net algorithm and
RTRL is in the unit update equations ((2) and (4)) and
equations (6). Compare (6) with the corresponding
equation from RTRL:

pllj(t+1) = 9%k () =
aw,-j

F o) | X, wiap) + Sinnj() ®
I

we see that (6) differs from (8) in exactly the same way
that (4) differs from (2). Therefore, in the limit At=t, the
delta net learning algorithm also reduces to the RTRL
algorithm.

2 SIMULATIONS

While the delta net equations (4) is a discretized version of
(1), it may not be true that (1) and (4) have the same
dynamics for all possible functions f. However, for the
logistic function

fo=—1

l+e-X

(1) and (4) do indeed scem to be analogs of each other. To
see this, we take a two-unit fully connected network (Fig.
1a) and train it to oscillate as sinc waves with the RTRL
algorithm (Fig. 1b). This network has no inputs; the
learned oscillation is a stable limit cycle of the two-unit
dynamical system. The sine waves are normalized to
between 0.1 and 0.9, and discretized with period T=30;
that is, the discrete network steps through one period of
the sine wave after 30 network iterations®,

We then use the weights learned from the RTRL
algorithm as the weights for an identical delta network,
and run this network with At=0.1. That is, we are really
running the same network with the delta net update
equations (4) instead of the discrete equations (2). The
oscillation thus generated is qualitatively
indistinguishable. But note that now it takes
iterations to complete one period (30 x 0.1). Phase-s; ..
plots (unit 1 against unit 2) of these oscillations are
shown in Figure 2a and 2b. The same holds for At=0.01

4The period T is in units of the time constant. In this and al
simulations that follow, we use a time constant of 1 for all
units.

125

126

Tsung

Wx

a

60 120
b

Figure 1: a. Diagram of the 2-unit fully connected network. The w,y's and biases are the weights. b. Sine waves
learned with the RTRL algorithm, with period T=30 and phase difference of n/4. Unit 1 is the solid curve; unit 2 the
dotted curve. The dots (unit 2) are actual values iterated by the network. For weights see Table 2a,

0.2 0.4 0.6 0.8 1
a

0.2 0.4 0.6 0.3 1
b

6.2 0.4 0.6 0.3 1

c

Figure 2: Phase plots of oscillations gencrated by the
network of Fig. 1, but run with different At. a. At=1
(same as Fig. 1b). b. At=0.1. c. Numerically integrated
with step size 0.01.

60 120 180 240 300 360

180 360 540 720 900 1080

500 1000 1500

c

2000 2500 3000

Figure 3: Oscillations learned by delta net algorithm.
a. Period T=10, At=0.1. b. T=30, At=0.1. c. T=I10,
At=0.01. The distortion is small even though one period
takes up to 1000 iterations to complete. Unit 1 is the
solid line; unit 2, dotted line.

(3000 iterations per period). In fact, the same oscillation
is generated using the continuous equations (1), which are
numerically integrated with the 4th order Runge-Kutta
method at a step size of 0.01.

The above tests shows that, at least for this two-unit
network, the weights learned with the RTRL algorithm
has the same behavior with the RTRL net, delta net, and
continuous net. There the delta net is used simply as a
first order numerical integrator. In Figure 3 we show
oscillations generated with the delta net learning
algorithm. In Fig. 3a, the two unit net is trained with
period T=10, and At=0.1 (100 iterations/period). In Fig.
3b, T=30 and At=0.1; in Fig. 3¢, T=10 and At=0.01.
Table 1 shows the weights for these three cases.

These weights, obtained with the delta net algorithm, can
also be run with different At from what they were trained
with. For instance, the net from Fig. 3a is trained with
At=0.1; it can be run with At=1 (= RTRL net), or
At=G.01, and will generate the same wave forms,

The above tests supports the hypothesis that the delta net
formulation is a good analog of both the continuous
equations (1) and discrete equations (2), Whether this is
true across a wide range of problems remains to be seen.

As a larger example, Fig. 4 shows a four-unit fully-
recurrent network, two units trained to produce sin(t) and
sin(2t), the other two are hidden units and are not plotted.
Hidden units are necessary in this case because the phase
space trajectory crosses with itself; at the point of
intersection, additional information is needed for the net to
figure out where to go next.

3 DISTORTED WAVE FORMS WITH
THE RTRL ALGORITHM

Empirical obscrvations show that it is necessary to use a
technique called “teacher-forcing” in order to use the
RTRL algorithm to train a network to oscillate (Williams
& Zipser, 1989). The same is found to be true for delta
nets. Teacher-forcing means, during training, nstead of
summing up the actual activations from the incoming
units (which may be erroneous), each unit sums up the
correct, teacher activations as its input for next iteration.

Learning in Recurrent Finite Difference Networks

One may visualize the effect of teacher-forcing by
imaginiag that the network is learning to follow a
trajectory; it goes astray (because the weights are wrong),
but teacher-forcing puts the net back on its desired
trajectory by setting the state of all the units to that of the
teachers’. Teacher-forcing is applied periodically (by
default, at every iteration) until the error criteria is metd.

However, as an artifact of teacher-forcing, it can
sometimes happen that after training, the error is
consistently low (satisfying the error criteria), y«t during
free-running (when the teacher is removed), the leamned
oscillation appears very distorted from the teacher, An
interesting example is from training the two-unit network
with the RTRL algorithm to learn sine waves. When the
period T is around 30 (see Fig. 1b), the net can
approximate the sine waves fairly well. With T=60, that
is, the net is to iterate 60 times during one period of the
sine wave, training time can double, and the leamed wave
forms are slightly distorted. At T=100, if the net can
oscillate at all, the wave forms are so heavily distorted
they can hardly be called sinc waves (Fig. 5). Weights
for the three networks in Figure 5 are shown in Table 2.
For periods much greater than 100 and smaller than 20,
the net is unable to learn the sine waves with the RTRL
algorithm, This is clearly undesirable for two reasons:
First, if higher sampling frequency than 30 points per
period is needed; for instance, if one wants to model a
three-second oscillation, and precision down to
millisecond level is desired. Second, onc would like the
teacher-forcing trained behavior to be the same as the free-
running behavior, otherwise there is no obvious criteria
for when the network has actually learned the teacher.

This distortion in RTRL nets is perplexing, too, because
in section 2 we have shown oscillations by delta nets
having up to thousans of iterations per period, without
much distortion. Rccall, also, that weights Iearned by a

51t is not entirely clear why teacher forcing is necessary in
learning oscillations. One possible reason is to adjust the
internal clock of the network: The net may oscillate correctly
but if the phase is off, then the error will be consistently
high. During training the net must learn to both create the
correct internal clock and “adjust 1t to the right time”.

Table 1: Weights for the 2-unit delta nets, a, b and ¢ correspond to the nctworks that generated the oscillations in

Figure 3a, 3b and 3c.
l T | At I w1l i wiz | wa I w22 I bias 1 I bias 2
i
10 0.1 7.053 -3.639 4,626 2.065 -1.703 -3.331
b 30 0.1 5.311 -0.954 1.828 3.642 -2.163 -2.726
c 10 0.01 9.372 -4.933 5.202 2474 -2.271 -3.706

127

128

0.8
0.6
4N N n A 0.4
p : 0.2
.4F . g0 120
.2¢ 2
\J J v \
75 150 225 300 375 450
a3
A
.8t &
.6_'
L4t
.2t
0.2 0.4 0.6 0.8
b

Tsung

Table 2: Weights for the 2-unit RTRL nets; a, b and ¢ correspond to the networks that generated the oscilfations in
Figure 5a, 5b and 5c. As the period T increases, the learned oscillations become more distorted.

|Pcn'odT| w1 l w12 l w21 l w2 I bias 1 I bias 2

a 35 4.756 -1.159 1.022 4.620 -1.796 -2.807
b 60 4.894 -0.768 0.638 4.781 -2.069 -2.684
c 100 5.044 -0.772 0.632 4954 -2.246 -2.745

Figure 4: a. 4-unit delta nct learned to produce sin(t)
(solid line) and sin(2t) (dotted lin¢). The two hidden unis
are not plotted. b. Phase plot of a.

Figure 5: Oscillations lecarned by RTRL algorithim
show distortions as the periods increase. a. Period T=30.
b. T=60. c. T=100.

RTRL net (with period T=30) may be run with a At of
0.01, so as to have 3000 iterations per period without
noticeable distortion (Fig. 2c).

We mentioned that the delta net equations (4) reduces to
the discrete equations (2) when At=t. However,
mathematically, something fundamentally different
happens at At=t. the exponential decay term in the
equation disappears; the old activation is completely
forgotten with each new iteration. This suggests that a
key advantage of the delta net (4) and the continuous net
(2) is that the decay term acts as a direct memory input to
the unit. As the curve (sine wave) is more finely
sampled, the outputs of a unit from one time to the next
(t to t+A41) are very close to each other. The correct way
to process this is to make At smaller, so the contribution
from the decay term is greater, and more of the previous
value is retainedS. In the RTRL net, there is no such
decay term serving as a “memory”. What it ends up
trying to do, say if a sampling rate of 100 points per
period is needed (Fig. 5¢), is to try to expand the
oscillation over 100 time constants, which is the incorrect
interpretation of *“100 points per period”.

In the RTRL net, the unit trying to achieve a value close
to its previous value after an iteration must do so
indirectly through the self-recurrent weight. Indirectly,
because this input is “squashed” by the nonlinear transfer
function. For a sigmoidal unit to retain its value near the
maximum of 1, f must be close to 1, so the weight must
be large (c.g. £(4)=0.98; £(5)=0.99, where f is the logistic
function). Table 2 indeed shows that as T increases, the
self-recurrent weights increase monotonically. On the
other hand, influence from the other unit should decrease,
in this 2-unit network, so that it takes longer to finish
one oscillation. This trend is also observed in Table 2.
Let us look at (1) again, in vector form:

F =5+ FW) ©)

Defining the net input x,
I=WY; so X’ =Wy’

and by multiplying W on both sides of (5) we get the
equivalent system:

X' =—x+ Wj’ﬁﬁ ©

This system is nonlinear exactly when f is nonlinear. The
weights, W, are then the cocfficients to the nonlincarities.
As sine waves are lincar harmonic oscillations, it is
reasonable to assume that the network can approximate
sine waves best when it can operate in the lincar region;
that is, when the weights are small or when the weights
combine so that the nonlinear effects cancel. In the case

6This simply means the continuity property of (1) is
preserved in (4).

Learning in Recurrent Finite Difference Metworks

of Table 2, increasing T forces the differcnces between a
unit's self-recurrent weight (which becomes larger) and the
weight from the other unit (which becomes smaller) to
become large enough so that the network becomes a
highly nonlinear oscillator. Hence the distortion observed
in Fig. 5c.

Linear units will be much better at learning sine waves,
but a linear system will not be able to provide stable limit
cycles, which is important in biological oscillations.

The oscillation in Fig. 5c is interesting in its own right
in that it resembles a class of nonlinear oscillators called
relaxation oscillators. Relaxation oscillators are
characterized by a phase where there is a relatively small
change in the system, and a phase of very rapid changes.
After the rapid phase, the system returns to the slow phase
and starts over. Clearly, many biological oscillations fit
this qualitative description, two immediate examples are
the heartbeat and the action potential. A well studied
relaxation oscillator is defined by the Van der Pol
equation, where its near-harmonic oscillation becomes
relaxation oscillation exactly as the coefficient of the
nonlinear term becomes large’. It would be interesting to
investigate the relationship between this class of
differential equations and neural network oscillators.

4. DISCUSSION

The RTRL algori:iim is straightforward to implement for
one familiar with back propagationd. Once it is
implemented, the delta net modification can be made by
changing as few as three lines of code. The only
differences from RTRL net are the state equations (4) and
the “p-values™ (6). Also, note that the derivative of the
logistic function,

£ =f(1f) attimet
can no longer be written as
(1) = y(r+1J*(1-¥(1+1))

(which is done in back-prop and RTRL implementations),
because

Y(r+1) = fix(1)
is not the update function anymore,

As with RTRL, the delta net algorithm suffers from high
computational complexity: on the order of (n4). For
small networks (on the order of 10s of units in our
experience), this complexity factor is not as important and

T(Thompson,1986) contains a good but very brief
introduction to relaxation oscillators that introduces the
FitzHugh-Nagumo model of nerve axon response. A more
thorough account on relaxation oscillators is by (Grasman,
1987).

8For implementation details, see (Williams & Zipser 1989).

129

130

Tsung

the algorithm can be quite fast. For example, convergence
of a 12-unit network trained to learn a biological
oscillation (Tsung, Cottrell, & Selverston, 1990) on the
Sun 4 takes less than three minutes with RTRL and about
20 minutes with delta net (in real time). This
combination (easy implementation, small network) can be
quite useful in the early stages of a modeling cffort when
changes in network architectures are made often. For
more discussions on the pros and cons of different
paradigms of recurrent learning algorithms, see Pineda
(1989), and Williams & Zipser (1990).

During delta net training with a small At (0.1 or 0.01), we
found that the net actually learned faster (by a factor of 5
to 10) when teacher-forcing was applied only
intermittently, instead of at every step. For example,
with a period of 10 and At of 0.01 (time constant of 1),
teacher-forcing at every 50 iterations was sufficient and
fasterd. It was observed that with small At, teacher-
forcing at every step would not give the net a chance to
accumulate large errors, so learning would be slowerl0,
Also, the error threshold should be sclected with some
care, as it depends on both the desired behavior (teacher)
and the choices of At.

The second problem described in section 3, namely that
the learned behavior does not always cormrespond to the
teacher behavior when it is trained with teacher-forcing,
even though the error cannot be reduced further, is an
artifact introduced by tcacher-forcing. One may
contemplate various adaptive teacher-forcing ideas when
training with delta net. For instance, gradually reduce the
frequency of injecting teacher-forcing, say from once every
10 iterations, to once every 20, 30, ..., iterations.
Another possible approach is to teacher-force a unit only
when its error reaches some threshold. The latter suggests
an "asynchronous teacher-forcing” method. These ideas
have not been tried in simulation.

Finally, it should be mentioned that this particular
discretization scheme chosen to relate the continuous
equations and discrete equations is certainly not new. For
example, Renals (1990) has studied the dynamics of neural
networks at various degrees of symmetry and
"discreteness” using the same discretization.

Acknowledgements

The author has benefitted from comments by Fernando
Pineda, Peter Rowat, and David Zipser.

It might be better if the sampling frequency and teacher-
forcing frequency are relatively prime with cach other so the
net is forced to all possible points on the trajectory at
different times.

10pavid Zipser, personal communication.

References

Gherrity, M. (1989) A learning algorithm for analog,
fully recurrent neural networks. Proc. IJCNN,
Washington D.C., June 18-22, 1-643.

Grasman, J. (1987) Asymptotic methods for relaxation
oscillations and applications. New York: Springer-
Verlag.

Hopfield, J. J. (1984) Neurons with graded response have
collective computational properties like those of two-state
neurons. Proc. Nat. Acad. Sci, 81, 3088-3092.

Pearlmulter, B. A. (1989) Learning state space trajectories
in recurrent ncural networks. Proc. [JJCNN, Washington
D.C., June 18-22, 1I-365.

Pineda, F. J. (1987) Generalization of back-propagation
to recurrent neural networks. Physical Review Letters,
59, 19, 2229-2232.

Pineda, F. J. (1989) Time dependent adaptive necural
networks. In D.S. Touretzky (ed.), Advances in Neural
Information Processing Systems, 2, 710-718.

Renals, S. (1990) Chaos in neural networks. In Neural
Nemworks, L.B.Almeida & C.J.Wellekens (cds), Lecture
Notes in Computer Science 412, Berlin: Springer-Verlag.

Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986)
Leaming internal representations by crror propagation. In
Rumethart, D. E., McClelland, J. L. & The PDP
Research Group, Parallel Distributed Processing Vol. 1.
Foundations, MIT Press.

Thompson, J. M. T., Stewart, H. B. (1986) Nonlinear
dynamics and chaos. Chichester: Wiley.

Tsung, F. S., Cottrell, G. W., Selverston, A.L (1990)
Some experiments on learning stable network
oscillations. Proc. IJCNN, San Diego, June 17-21, I-
169.

Williams, R. & Zipser, D. (1989) A leamning algorithm
for continually running fully recurrent neural nctworks.
Neural Computation, 1, 270-280.

Williams, R. & Zipser, D. (1990) Gradient-based leamning
algorithms for recurrent connectionist nectworks.
Technical Report NU-CCS-90-9, College of Computer
Scicnce, Northeastern University, Boston.

Temporal Backpropagation: An Efficient Algorithm for Finite
Impulse Response Neural Networks

Eric A. Wan
Department of Electrical Engineering
Stanford University
Stanford, CA 94305-4055
e-mail: wan@isl.stanford.edu

Abstract

The traditional feedforward neural network
is a static structure which simply maps input
to output. To better refiect the dynamics in
the biological system a network structure is
proposed which models each synapse by a Fi-
nite Impulse Response (FIR) linear filter. An
efficient gradient descent algorithm is derived
which will be shown to be a temporal gener-
alization of the familiar backpropagation al-
gorithm.

1 INTRODUCTION

A standard neural network models a synapse by a sin-
gle variable weight parameter. In a feedforward struc-
ture this results in a static network which maps input
to output. Real neural networks are of course dynamic
in nature which is reflected in the temporal properties
of the synapse along with such processes as impulse
transmission and membrane excitation. While many
accurate models of such processes do exist, from an en-
gineering standpoint most are unrealistic to work with.
The model we propose to use represents a synapse not
by just a single weight parameter, but by an adaptive
filter (Widrow, 1985). Further, we restrict the filter to
be discrete timne, characterized by a Finite Impulse Re-
sponse (FIR) !. While biologically motivated, we make
no claims that the structure is necessarily biologically
plausible. With this we proceed to derive algorithms
for adapting the synaptic transfer functions so as to
train the network as a whole.

The structure of the FIR network presented here is
similar to the Time-Delay Neural Networks (TDNN)
used in speech recognition (Waibel, 1989). The pri-
mary differences arc a matter of furmalism and nota
tion. As we will see, however, the proper choice of no-
tation allows for a very elegant solution to the training

'The Infinite Impulse Response (IIR) case has also been
studied and will be presented in a future paper.

Xy

X2 out

y =y, WX

X3 :
out = f(y)

Figure 1: Static Model of Neuron

algorithm. This algorithm may then be used as a com-
putationally efficient method for training Time-Delay
Neural Networks.

2 NETWORK STRUCTURE

2.1 STATIC MODEL

Consider first the traditional model of the neuron
shown in Figure 1. The output of the neuron is simplis-
tically taken to be a nonlinear function of the weighted
sum of its inputs. Mathematically this is expressed as

y= Z WiX; (1)
out = fy] (2)

where X; are the inputs to the neuron and W; are
the synaptic weights. By modeling the synapse with a
single weight parameter the neuron can be considered
a slafic structure mapping input to output. Clearly
this is an oversimplified mudel of a biological neuron.

A common configuration is to arrange the neurons into
a feedforward structure as shown in Figure 2. While
this increases the class of functional mappings, it is
still a static mapping from input to output.

131

132

Wan

Figure 2: Static Feedforward Network

K

Xk-3) __XkT)

X(k-2)

Z* = unit delay
k =discrete time index s(k)

s{k) = g: W(X(k-t) = W-X(K)
0
Figure 3: FIR Synapse

2.2 TEMPORAL MODEL

A more sophisticated model of the neuron results if
time is incorporated into the structure by replacing the
static model of the synapse by a FIR linear filter. This
corresponds to a Markov model of transmission flow
through the synapse. The synaptic model is shown in
Figure 3. Defining k to be the discrete time index,
the “output® of the synapse is now 2 weighted sum of
delayed inputs

T
s(k) =Y W)X (k- 1). 3)

=0

The past input states can be represented in vector no-
tation

X(6) = [X(#).X(k— 1), X(E-T). (4)

Similarly we form a weight vector for the filter cocffi-
cients

W = [W(0), W(1),..W(T)]. (5)

This allows us to express the operation of a synapse by
a vector dot product,W - X(k), where time relations
are now implicit in the notation.

y(K) =3 Wi X4K)
out(k) =fiy(i)

Figure 4: Temporal Model of Neuron

Figure 5: FIR Network

Using this model of the synapse we construct the neu-
ron. The structute is the same as before except each
static synapse is repleced by the FIR model. This is
shown in Figure 4. Mathematically, the output of a
neuron, now a function of time, is defined 2s

y(E) =) Wi - Xi(k) ©)
out(k) = f{y(k)} Q)

Note the similarities in appearance between these
equations and those of the static model in Equation 1.
We have simply replaced scalars by vectors and multi-
plications by vector products. The convolution opera-
tion of the synapse is implicit in the notation. As we
will show, these simple analogies will carry throughout
subscquent derivations.

Finally, the temporal model of the neuron is used to
construct 3 feedforward network as shown in Figure 5.
Only feedforward structures will be considered at this
time. However, the mapping for the feedforward net-
work is nv longer simply a static mapping. Dynamics
are internal to the structure. Qutputs depend on past
values of the input.

Temporal Backpropagation: An Efficient Algorithm for Finite Impulse Response Neural Networks

3 TRAINING

Training will be based on a supervised learning algo-
rithm in which a desired response vector is provided
at each instance of time. Thus at each time increment
the instantaneous squared error is defined as

) = Tl - outs®F = ek (9)

where out, (k) is the true value of output neuron 7 and
d,(k) is the corresponding desired response. The sum
is taken over all output neurons for the network, The
goal is then to minimize the total squared error taken
over all time

e =3 e*(k). 9
k

Note the choice of a Euclidean squared error metric is
neither unique nor essential to the arguments in this
paper. Other error metrics such as cross-entropy may
also be considered. Furthermore, it is actually not
necessary to provide desired response vector at all in-
crements of time. It is the overall sequence of outputs
that is important. At any given increment the desired
output may not be known in which case the error met-
ric can be taken as zer¢ This is the case, for example,
with phoneme recognition.

Regardless of the choice of error metrics, learning will
be based on traditional gradient descent in which we
attempt to minimize total error over all time.

3.1 INSTANTANEOUS GRADIENT
METHOD

Returning to the squared error metric, the error gra-
dient with respect to a given weight vector is normally
expanded gs follows:

Oe? de?(k)
~ (10)
WL, 2:4 WY,

Subscripts are included so that W!. specifies the
synaptic filter connecting the output of neuron ¢ in
layer | to the input of neuron j in the next layer. By
taking each term in the expansion as an unbiased in-
stantaneous estimate of the gradient, we may form the
on-line training algorithm:

de2(k)

w! =W (k) - p—"

W+ D =Wy i O
in which the weight vectors are updated at each incre-
ment of time (i is defined as the learning rate).

As we will show, this obvious expansion of de?/6W
into the terms de?(k)/OW does not lead to a desirable
learning algorithm for this structure, A less intuitive
expansion, in fact, yields a more attractive algorithm

which exploits the structure’s FIR characteristics. For
now we will proceed with this approach to show where
the problems arise.

While direct calculation of the gradient terms is pussi-
ble (Wan, 1990), the mathematics only tends to ob-
scure the main features of the algorithm. A more
illustrative approach is provided by using a graphi-
cal technique which involves unfolding the network in
time. The general strategy is to try and rerzove all
time delays by expanding the network into a larger
static structure. Standard backpropagation (Ramel-
hart, 1986) can then be used to calculate the necessary
gradient terms.

As an example, consider the very simple network
shown in Figure 6. The network consists of three lay-
ers with a single output neuron and two neurons at
each hidden layer. Each synapse is modeled as a sec-
ond order (two tap) linear filter. Thus while there are
only 12 synapses in the network there are actually a
total of 30 variable filter coefficients. Now starting at
the last layer each tap delay is interpreted as a “vir-
tual neuron” whose input is delayed the appropriate
number of time steps. A tap delay is then “removed”
by replicating the previous layers of the network and
delaying the input to the network accordingly. This
is shown in Figure 7. The process in then contin-
ued backward through each layer until all delays have
been removed. The final unfolded network is shown in
Figure 8. This method produces an equivalent static
structure where the time dependencies have been made
external to the network itself by time windowing the
input. Notice that whereas there were initially 30 vari-
able coeflicients the equivalent unfolded structure now
has 150 “static” synapses. This can be seen as a result
of redundancies in the weights. In fact, one can view
a FIR network as a compact representation of a larger
static network with imposed symmetries.

Given the unfolded static structure it is then a straight
forward process to find the instantaneous error gradi-
ents for each weight using standard backpropagation.
It is necessary, however, to keep track of which static
weights are actually the same so that the gradients
may be accumulated to find the total gradient for each
unique parameter in the network. This need to do
global bookkeeping is an immediate drawback to the
instantaneous gradient approach. There is a loss of
a sense of locally distributed processing. There is no
longer a symmetry between the forward propagation
of states and the backward propagation of gradient
terms. No nice recursive formula for propagating all
the error terms exists. The more layers in the network
the more complicated the process becomes

From a practical standpoint, perhaps the greatest
drawback to this approach is in the computational
complexity of the algorithm. In a static network the
nurnber of computations associated with the standard
backpropagation algorithm grows only linearly with

133

134 Wan

- S >
X1(k)

Figure 6: Simple Three layer FIR Network

X2(k-2)

X1(k-2)

$2(k-1) Otk)
X1(k-1)

X2(K)

X1(K)

Figure 7: Unfolding Process

X2(k-6)
X1(k-6)
X2(k-5)
X1(k-5)
X2(k-4) €&

X2(k-2)
X1(k-2)
X2(k-1)
X1(k-1)

X2(k)
X1(k)

Figure 8: Final Unfolded Network

Table 1: FIR Networks vs. Static Equivalent

FIR Network Varsable Static

Dimension Parameters || Equivalent
Nodes! Ordert

2X2x2X1 2:2:2 30 150
5x5x5x5 | 10:10:10 605 36,355
Ix3Ix3 9:9 180 990
A3%3IX3 9:9:9 270 9,990
3 Ix3x3Ix3 9:9:9:9 360 99,990
3" 9"=1 | (n—1)90 10" — 10

t+ Number of Inputs x Hidden Neurons x Outputs.
1 Order of FIR synapses in each layer.

the number of weights. As we saw, a very small
FIR network (30 parameters) was expanded to 2 much
larger static network (150 weights). In fact, the size
of the equivalent static network grows geometrically
with the number of layers and tap delays. Conse-
quently the number of computations required to train
the FIR structure also grows geometrically with the
size of the network. This would then be reflected in
the actual training time. Table 1 shows the equivalent
static size for various FIR networks. The TDNN sys-
tem of Waibel used for speech recognition consisted of
521 variable coefficients. However, the expanded vir-
tual network which was actually used to calculate the
gradients consisted of a total of 6233 weights.

3.2 TEMPORAL BACKPROPAGATION

We now present an alternative learning algorithm
which overcomes the problems associated with the in-
stantaneous gradient approach. Unfortunately it is
necessary to first complicate matters by introducing
a bit of notation. The output of the synaptic filter
connecting neuron ¢ in layer | to the jth neuron in
next layer is defined as

uf (k) = Wi - Xi(k) (12)

where W}; = [w] ;(0),w} ;(1), .0} ;(T")] specifies the
coefficients for the connecting synaptic filter. X!(k) =
[zl(k), zl(k = 1),..2l(k = T")] is the vector of delayed
states along the synapse.
The total input to the jth neuron in layer ! at time k
is specified as
Ny Ny
B =D vh(® = W XTR). (19)
i=1 i=1

The sum in the equation is taken over all N; neurons
in the layer. Finally, the output for the neuron is taken
to be a nonlinear sigmoidal function of its input

zj(k) = f(y; (k). (14)
This notation completely defines the structure of the
network. Note we can take :cg-’(k) to specify an external

Temporal Backpropagation: An Efficient Algorithm for Finite Imp ulse Response Neural Networks

input to the network while L(Ic) specifies an output

for an L layer network. Values of z}(k) for 1<1< L
specify internal states within the nétwork.

We are now in a position to formally derive the new
training algorithm. The original expansion of the total
error gradient into a sum of instantaneous gradients is
not unique. Consider the following:

ayj+1 (k)
T (15)

0e? de?
6W§j - Xk: 6y}+1(k)
This now yields an on-line version of the form:

33/,:"H (k) 3Wf,

Note the time index runs over y(k) and not e2(k). We
may interpret 9e2/Oy}*! (k) as the change in the total

squared error over all time due to a change in the input
to a neuron at a single instant of time. Furthermore,

e O (K) | (k))
ayiti(k) OWY 7 aWL(k)’
Only the sum over all k is equivalent.

Now for any layer 8y}(k)/0W;* = X{~'. Further-
more, we may simply define 8e?/dy! (k) = 6} (k). This
allows us to rewrite Equation 16 in the more familiar
notational form

WhHE+1) = Wi(k) - uit (k) - Xi(k) (18)

which now holds for any layer in the network. To
complete the derivation, an explicit formula for 6} (k)
must be found. For the output layer we have simply

Wf-j(k + 1) = Wi-j(k) -n

_ et ()
B = 50w = aEm
= —2e,()F(E (). (1)

For any hidden layer we have

de?
85 (k) —_—
’ ay; (k)

_ % Z)
B ayti(e) oui(k)
N¢+1

_ 1,00 (1)
- Yol

o ayi (1)
= FEE) YD OF 5 (0

m=1 ¢

But we recall

B0 =3 whn(®)ah(t -). (21)

k’=0

Thus
W () _ [wha(t—F) forogt—k<T 22)
ozl (k) 0 otherwise
which now yields
Nigr TV ke
S = FGE) YD et @uimt-k)
m=1 t=k
Ny 1t
= FBE) Y 6 (k +n)wlm(n)
m=1 n=0
Ny
= FER)- Y AR W ()
m=1

where we have defined
ALy (K) = (B (k) ha(k +1), 8k +TY] . (29)

Summarizing, the complete adaptation algorithm can
be expressed as follows:

W (k+1) = Wh(k) - psi1(R) - XIR) (25
~2e;(K)f' (v (k) 1=1L
6_',(]:) = Nigr
FEhR)- Y AR K- Wi 1<1<L-1
m= (26)

An immediate observation is that these equations are
seen as the vector generalization of the alrcady familiar
backpropagation algorithm. In fact, if we replace the
vectors X, W, and A by scalars, the above equations
reduce to precisely the standard backpropagation al-
gorithm for static networks. Differences, however, in
the temporal version are a matter of implicit time rela-
tions and filtering operations. To calculate 6; (k) for a
given neuron we propagate the §’s from the next layer
backwards through the synaptic filters for which the
given neuron feeds (see Figure 9). Thus &’s are formed
not by simply taking weighted sums but by backward
filtering. For each new input and desired response vec-
tor the forward filters are incremented one time step
and the backward filters one time step.

By having manipulated the terms used to accumu-
late the error gradients we have preserved the sym-
metry between the forward propagation of states and
the backward propagation of error terms. The sense
of parallel distributed processing is maintained. Fur-
thermore, the algorithm overcomes the computational
complexity encountered in the first algorithm. The
number of operations only grows linearly with the
number of layers and synapses in the network. This
savings comes as a consequence of the recursion which
efficiently groups terms into products of sums instead
of sums of products. Each unique coefficient is used

135

Wan

3 (k)

(k-
2 8" (k)
%K)
8'(k) = f'(Y(k))-; AP (K)-W)
Forward Propagation Backward Propagaton
X(k} Otk) §K) o{k)

— —— e~ —

Figure 9: Backward filter propagation of gradient terms

only once in the calculation. There is no redundant
use of terms as in the first case. Returning to the
TDNN example where 521 weights expanded into 6233
virtual weights, the use of temporal backpropagation
could result in a reduction in computer training time
by as much as 90%.

3.2.1 Noncausality

The specification of the temporal backpropagation al-
gorithm in Equation 26 hides an important subtlety
encountered when actually implementing the algo-
rithm. Careful inspection reveals that the calculations
for the 6_:-"1(k)’s are in fact noncausal. The source of
this noncausal filtering can be seen by considering the
definition of 6]~ (k) = 0e?/y}(k). Since it takes time
for the output of any internal neuron to completely
propagate through the network, the change in the total
error due to a change in an internal state is a function
of future values within the network. Since the network
is FIR only a finite number of future states must be
considered.

The exact time reference taken for adaptation pur-
poses is not important. Making the system causal
becomes a standard engineering task. This can be ac-
complished in a number of different ways by adding
a finite number of simple delay operators at various
locations within the network. One possible solution
follows if we require that all weights vectors are to
be adapted based on only the current error e?(k) and
past values of the error. Given this information we
may immediately form 6"&1:) for the last layer in order
to adapt the weights in the last layer. For the next
layer back, however, causality constraints imply that
terms are only available to calculate

Nigy
SN E=T) = f(yf~ (k=T))- D AR(=T) Wi
m=1

27
based on the requirement A(k — T) = [6(k — T),
6(k — T +1),..6(k)] be composed of only current and
past terms.

Since at time k only the time shifted value §*~!(k~T)
can be computed, the states XZ~2(k — T) must be
stored so that the product of the two may be formed
to adapt the synapses in the layer. Continuing one
more layer back, the time shift is simply twice as long,
Rewriting the algorithm in this causal form yields

WE™ (k+1) =W (k)= p6 2+ =" (k—nT). X7 ™" (k—nT)

~2¢,(K)f' (5 (¥)) n=0
S (honT) = S (F=nT)) 1n <L
Ny
-3 AR (knT) Wit
m=1

(28)

While less aesthetically pleasing than the earlier equa-
tions, they differ only in terms of a change of indices.
Summarizing then, we propagate the delta terms back-
ward continuously without delay. However, by defi-
nition this forces the internal values of deltas to be
shifted in time. Thus one must buffer the states X (k)
appropriately to form the proper terms for adaptation.
Added storage delays are necessary only for the states
X(k). The backward propagation of delta terms re-
quire no added delays and is still symmetric to the
forward propagation.

For simplicity in the above equations it was assumed
that the order of each synaptic filter, T, was the same
in each layer. This is clearly not necessary. If the order
is different for each layer in the network we simply
replace nT by

L-1
nTe Yy T (29)
I=zL=n

For the general case let T}; be the order of the synaptic
filter connecting neuron 7 in layer { to neuron j in the
next layer. Then for the case of arbitrary synaptic
filter order we have
L-1
!
nT Z n’lJax{T,J} (30)
i=L=-n

The basic rule is that the time shift for the delta asso-
ciated with a given neuron is equal to the total number

of tap delays along the longest path to the output of
the network.

3.3 DIFFERENCES IN ALGORITHMS

Both the first algorithm presented and the temporal
backpropagation algorithm are based on gradient de-
scent. They are not, however, equivalent. All gradient

Temporal Backpropagation: An Efficient Algorithra for Finite Impulse Response Neural Networks

Instantancous Gradient Method
20

’ 13
wP‘ .

0 150
Tims Incmooent, k

23

Temporal Backpropagation
20

15

Figure 10: Learning Curves

derivations assumed that the weight parameters were
fixed. During actual adaptation this is clearly not a
valid assumption. Minor discrepancies in performance
arise due to differences in the timing at which weights
are adjusted relative to the calculation of the error gra-
dients. Figure 10 shows averaged learning curves for
the two algorithms used on a two layer network? mod-
eling an unknown nonlinear system. Even for this sim-
ple example where combinatorial problems are not an
issue, temporal backpropagation resulted in roughly a
40.5% reduction in computer simulation time. Fur-
thermore, initial experimentation indicates the added
benefit of less misadjustment using temporal back-
propagation. For “small” learning rates differences in
the learning characteristics are negligible. Mathemat-
ically the algorithms become equivalent as u — 0. Al-
ternatively, terms may be accumulated to find the total
gradient for batch mode adaptation. In this case the
algorithms are functionally identical apart from spe-
cific implementation and computational differences.

4 APPLICATIONS

By modeling each synapse as a linear filter, the neural
network as a whole, may be thought of as an adap-

21 input, 1 output, and 5 hidden units with 4-tap FIR
filters for each synapse. g = .05

tive system with its own internal dynamics. Applica-
tions should thus include areas of signal processing,
control, and pattern recognition where there is an in-
herent temporal quality to the data.

In nonlinear controls, for example, the design of a neu-
ral controller is commonly a two stage process in which
both a feedforward controller and a system emulator
are separately learned. A static neural network can be
used for both components under the assumption that
full state knowledge is available. However, the use of
an FIR structure for both the emulator and controller
can allow for the estimation of internal states based on
available output observations.

As stated earlier, the definition of the FIR Neural Net-
work also encompasses Time-Delay Neural Networks
which have been investigated for use in speech recog-
nition. TDNN’s have been shown to be comparable to
the more traditional method of Hidden Markov Mod-
els for identification of phonemes (Waibel, 1989). The
temporal backpropagation algorithm may be used as a
simple means for greatly improving the training time
of such networks. An interest in implementing the al-
gorithm for future versions of the TDNN speech recog-
nitio;z system has already been indicated (Hampsbhire,
1990).

5 CONCLUSION

This paper has defined an FIR neural network struc-
ture. A more sophisticated model of the synapse is
used which replaces the static weight model by a lin-
ear Finite Impulse Response filter. A computationally
efficient gradient descent algorithm was derived which
was seen to be a temporal generalization of the familiar
backpropagation algorithm.

References

B. Widrow and S. D. Stearns. (1985) Adaptive signal
processing, Englewood Cliffs, NJ, Prentice Hall.

D. E. Rumelhari, J. L. McClelland, and the PDP Re-
search Group. (1986) Parallel Distributed Processing.

Ezplorations in the Microstructure of Cognition, Vol.
1, The MIT Press, Cambridge, MA.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and
K. Lang. (1989) Phoneme Recognition Using Time-
Delay Neural Networks, IEEE Transactions on Acous-
tics, Speech, and Signal Processing, Vol. 37, No. 3,
pp. 328-339, March 1989.

E. A. Wan. (1990) Temporal Backpropagation for FIR
Neural Nelworks, International Joint Conference on
Neural Networks, Vol. 1, pp. 5§75-580, San Diego.

J. Hampshire. (1990) personal communications.

137

Part V

Theory and Analysis

Optimal Dimensionality Reduction Using Hebbian Learning

Asriel Levin
Department of Electrical Engineering
Yale University
P.O. Box 1968, Yale Station
New Haven, CT 06520

Abstract

The problem of learning efficient representa-
tion of a high dimensional input by a lower
dimensional space is investigated. It is shown
that a recurrent system of interconnected lin-
ear neurons, using Hebbian learning rule to
update its connections, will converge w.p.1
to an orthogonal projection onto the space
generated by the first ¢ principal components
of the p dimensional input covariance matrix.
The problem is analytically tractable since
the input-output map is expressed by a lin-
ear equation.

1 Introduction

The subject of dimensionality reduction has
received extensive attention in the statistics
literature (Jolliffe,1986) and has proven to be
extremely useful when large dimensional data
needs to be analyzed. In recent years a few
algorithms were suggested, trying to achieve
efficient dimensionality reduction using net-
work techniques. Oja (Oja,1982) has shown
that a linear neuron (i.e an element whose
output is a weighted sum of its inputs) will
extract the first principal component of the
covariance matrix of its inputs if the weights
are modified using a variation of the Hebb
rule:

ait + 1) = ait) + 70w (t) — a(y()]y()
¢ - the weight vector.

u - the input vector.

y - the output.

7 - learning coefficient.

An algorithm extracting the first q principal
components was proposed in (Sanger,1989).
The method suggested extracts the principal
components sequentially and subtracts them
from the input thus errors tend to accumu-
late and only the first few components can be
estimated accurately.

In this paper we propose a new algorithm ex-
tending Oja’s result to learning an orthogonal
projection onto the space spanned by the first
g principal components. First, the problem of
dimensionality reduction is analyzed and con-
ditions for global optimality for certain class
of mappings are established. Using stochastic
algorithm theory, it is shown that a two lay-
ered network with feedback connections and
local Hebb type learning rule is guaranteed
to converge to the optimal reduced represen-
tation. Learning is done on-line using local
unsupervised rules, thus the algorithm may
be used both as a practical method for data
compression and as a building block in a net-
work enabling it to achieve efficient internal
representations. Self supervised backpropa-
gation in a linear network would give similar
results (Baldi & Hornik,1989) but would re-
quire error propagation through the layers.
In section 2 the problem is formally posed.
Main results and proposed architecture for
implementing the algorithm are stated in sec-
tion 3. All proofs are deferred to the ap-
pendix.

2 Statement of The Problem

Similarly to self supervised BP (Rumelhart et
al,1986) we define a representation to be op-
timal if given the reduced dimensional output
we are able to reconstruct the original input
with minimal mean square error. More pre-
cisely:

Given u a p dimensional random vector we
wishto find f: R? - R?and g: R - RP
(g < p) such that

E{llu~ gof(u)]|*}

is minimized.

In this paper we will restrict ourselves to the
case where g is linear, 1.¢ it can be repre-
sented by a p x ¢ matrix C.

141

142

Levin

Defining y = f(u), our goal is to minimize
J = B{flu- Cy]|*}
with respect to C and y.

3 Main Results

1. Optimal Feedforward Mapping.
If the feedback mapping is linear then
the optimal feedforward mapping is also
linear and is given by

y = (CTC)"'CTu=Bu

2. Learning Rule for C.
If C is adjusted according to:

C(t+1) = C(t)+7(t)u)-CHy(Oly™ () ly-Bu

Where 7 is a decreasing sequence (like
1/t) then C (and thus y) will converge
w.p.1 to a global minima of J.

Note: As proved in (Baldi et al,1989)
this means that the columns of C will
span the space generated by the first ¢

principal components of E{uuT}.

Figure 1: Diagrammatic Representation of Proposed
architecture

3. Proposed Algorithm.
It can be proved that with the above
learning rule CT C is constant. T s the
optimal solution is not unique . .d de-
pends on the initial value chosen for
C. Particularly, choosing CTC = I

will simplify the expression of y to
y=CTu=CT(u-Cy)+y. (An im-
plicit assumption is that the delays in
the system are neglegible compared with
the intervals on which the input u is
fixed). Define x = u— Cy. Combining
all the above we get the following set of
equations:
x(t) = u(t) - C()y(t)
y(t+1) = y(t) + CT(B)x(t)
C(t+1) = C(®) + 7(t)x(t)y™ (¢)

and the update rule for C becomes the
familiar Hebb rule. The above algo-
rithm is realized by a two layered linear
network with antisymmetric connections
between the layers. x is the input layer
consisting of p units and y is the out-
put layer consisting of ¢ units. Because
of the degenerate form of y stability is
trivial.

Note: If y is a scalar (¢ = 1) this re-

duces to the update rule proposed in
(Oja,1982)

4 Discussion

A new, very easy to implement algorithm was
proposed. Due to its local and on-line nature
it should prove very useful when large dimen-
sional data needs to be analyzed.

By limiting ourselves to linear feedback map-
ping the whole problem became linear and
thus analytically tractable. Though no as-
sumptions concerning the statistics of u
where made, it is well known that this re-
stricted class of mappings will be optimal
only if u is a gaussian process. In many appli-
cations gaussian distribution can be assumed.
For other types of distributions the above
would give only the optimal linear estima-
tion. To get global optimality, more general
feedback mappings would need to be consid-
ered. In such cases self supervised backprop-
agation through layered networks consisting
of nonlinear elements might prove better (e.g
(Saund,1989)) but for a specific task many
layers may be required making the backprop-
agation method prohitively slow.

Thus, a further application might be achieved
by inserting the above architecture as a
component in a larger network containing
nonlinear elements. As proposed in (Bal-
lard,1987), achieving efficient internal rep-
resentations should speed up learning rate,
helping to overcome the inherent deficiencies
of supervised methods. This direction is cur-
rently being pursued, trying to incorporate

Optimal Dimensionality Reduction Using Hebbian Learning

the effect of sigmoidal non-linearities in the
above learning rules.

5 appendix
5.1 Proof of result 1

If u is ergodic J can be approximated by

J= hm —Z"u(n) Cy()II?

n=1
Given u, C for y to be optimal
§J(y,Ay) = 0VAy € I®
or

lim 27(C.¥ + €Ay)

T (q—
lim Ic = lim lrn ZC (u-Cy)Ay

=0 N—co
n=1

Since Ay is arbitrary we get 6J = 0 iff
CT(u~ Cy) = 0 And if the columns of C
are linearly independent the unique solution
for y is:

y = (CTC)~!CTu=Bu
5.2 Proof of result 2

Define J = J (C,Bu)._If C is adjusted in the
gradient direction of J i.e.

dc_—dj

dt dC
we are guaranteed to converge to an equilib-
rium point of J.

dj
ic = LN 3‘_‘.’62 de
lu—(C +eAC)(y + eAYAC)|Ply-Bu

AC € L(R%, RP)
Ignoring second order terms in € we get

dj 1 -
= = H it _ T T
i = N N[;::l(“ Cy)y ACT +
N
Y- CT(u-Cy)lly-Bu
n=1

Second term is identically 0 so if we choose

AC = llm —Z(n Cy)yT

we get

— = —¢(AC)? <0

and J will converge to an equilibrium point.
For general linear mappings C’, B the land-
scape of

J' =< |ju— C'B'u]® >
was investigated by (Baldi and Hornik,1989).
Their main result is summarized in the fol-
lowing theorem.
Theorem: B’,C’ correspond to a critical
point of J' iff
= Aqw
B’ = W-IAq
D=CB'=Py,

Aq - a p X ¢ matrix whose columns cosisist
of ¢ Principal Components of Q.
P, - Projection matrix onto the space

spanned by the columns of Aq

W - Any ¢ X g invertible matrix.

If D is a projection to the space spanned by
the first q Principal Components than it cor-
responds to a local and global minima of J'.
All other critical points are saddle points.
From result 1 we know that y would be op-
timal if y = Bu. Hence, minimizing J’ is
equivalent to minimizing J.

Now J has the same equilibria points as J
and further we can prove:

Lemma:A pair C,B(C) is a local minimum
of J iff it is a local minimum of J’.

The proof is long and not central to the
derivation so it will not be given here.

So far calculation of ¢€ involved summa-
tion over long periods. i‘o make the scheme
more feasible we can used some results from
stochastic algorithm theory (Ljung,1977)
that in this context would translate to:
Theorem:Let ¥(t) be a sequence of positive
numbers satisfying:

Y oAt) = oo (1)
Yot <oeo (2

v(t)decreasing (3)
lim sup[——

1
——] <0 4

Jim supl 5 = 2] @
If C is updated according to the rule
C(t+1) = CW+1(®)[ut)-COY O™ () ly-Bu
it will converge w.p.1 to a local minimum of
J.
And thus, togather with the derivation above
(i.e minima of J coincide with minima of J
and all minima are global) the above update

rule would guarantee convergence to a global
minima of J w.p.i.

143

144

Levin

5.3 Derivation of Proposed
Algorithm

To complete the derivation we only need to
prove that CTC is constant.

d(CTC)
dt
y(yTCT -UT)C+CT(u~Cyly” |y_.py=
(cTC)~1cTuuTc(cTC)-cT —uTiC
+CT[u—-c(cTC)-1cTuju’c(CcTC)" =0

=CTCc+CTC =

6 references

P. Baldi, K. Hornik. Neural Network and
Principal Component Analysis: Learning
From Ezxamples Without Locel Minima. Neu-
ral Networks, 2(1):53-58, 1989.

D.H. Ballaxd. Modular Learning in Neural
Networks. Proc. Sixth National Conference
on AI (AAAI-87), vol. 1: 279-284, 1987.

I. T. Jolliffe. Principal Component Analysis.
Springer-Verlag, 1986.

L. Ljung. Analysis of Recursive Slochastic
Algorithms. IEEE T-AC, Vol AC-22(4):551-
575, 1977.

D.G. Luenberger. Optimization by Veclor
Space Methods. John Wiley, 1969.

E. Oja. A Simplified Neuron as a Principal
Component Analyzer. J. Mathematical Biol-
ogy, 15:267-273, 1982.

D.E. Rumelhart, G.E. Hinton & R.J.
Williams. Learning Internal Representations
by Error Propagation. In Parallel Distributed
Processing, MIT Press, 1986.

T.D. Sanger. Optimal Unsupervised Learning
in Feedforward Neural Networks MIT, M.Sc
Thesis, 1989.

E. Saund. Dimensionality Reduction Using
Conneclionist Networks. IEEE T-PAM]I, Vol
11:304-314, 1989.

Basis-Function Trees for Approxi

ation in High-Dimensional

Spaces

Terence D. Sanger
Electrical Engineering and Computer Science Dept.
Massachusetts Institute of Technology
Cambridge, MA 02139
tds@ai.mit.edu

Abstract

I describe a new algorithm for approximat-
ing continuous functions in high-dimensional
input spaces. The algorithm builds a tree-
structured network of variable size whichb is
determined both by the distribution of the
input data and by the function to be approx-
imated. Efficient computation in this tree
structure takes advantage of the potential for
low-order dependencies between the output
and the individual dimensions of the input.
This algorithm is related to the ideas behind
k-d trees (Bentley, 1975), CART (Breiman et
al., 1984), and MARS (Friedman, 1988). I
present two examples.

1 INTRODUCTION

Basis function networks have proven to be useful for
approximating functions in a variety of different do-
mains (for reviews, see (Poggio and Girost, 1989, Pow-
ell, 1987, Klopfenstein and Sverdlove, 1983)). Such
networks are represented by equations of the form:

§= > wipi(z) (1)

where y is the desired (scalar) output for input z € RP,
7 is the output approximated by the network, and the
w;’s are learned scalar weights. The ;’s are often
radial basis functions of the form

vi(z) = ¢(llz - &ll) ()

whose value depends only on the distance of the input
z from the “center” &;.

When the dimension p of the input space is high, the
work required to calculate the output ¢;(z) of any
basis function increases. In addition, since the size
of the space increases geometrically with p, the data
will be very sparsely placed and the estimate j will be
undefined for most inputs unless a prohibitively large

number of basis functions is used. This problem is of-
ten referred to as the “curse of dimensionality”. One
might attempt to avoid such problems by noting that
in some regions of the input space, the desired output
function can be approximated using only a few dimen-
sions of the input. This would occur if, for instance,
the data were to lie on the line z; = f(z;) for any 1-1
function f, in which case the desired output y could
be estimated from either z; or z,.

In this report, I describe one method for reducing com-
putational work which makes use of this idea. It is
applicable in the case where the basis functions are
separable, in the sense that they can be written

9i(z) = briz1) - - i (2p))
where z; is the 7** component of z,
$ri(2a) = ¢(lea = (§i)al)

is a scalar function of scalar input, and rf, specifies
which basis function ¢ should be chosen along the j**
dimension. (An example of separable basis functions is
the radially-symmetric Gaussian basis.) In this equa-
tion and in the rest of this report I assume for simplic-
ity that the centers of the basis functions are located
on a fixed regular lattice with N along each dimension
so that there is a total of NP basis functions. How-
ever, the technique can also be applied to basis func-
tions with arbitrarily fixed centers, in which case, each
function $re (zq) is the projection of ¢;(z) along the
z4 dimension.

2 NETWORK STRUCTURE

In order to understand the structure of the proposed
network, I will build the approximation up one dimen-
sion at a time. If the output can be determined from
only the z; dimension, then it can be written

N
=3 anda(z1) (9)
n=1

146

Sanger

$1(z1) i (21)

é (372)

$ry(22)

g

¢N($1)

$n(z2)

Figure 1: Two-layer tree constructed by the algorithm. z's are inputs, ¢’s are basis functions, and a’s are

weights. See text for explanation.

where the ay,’s are the weights for the basis functions
&n(z1) along this dimension, and the superscript indi-
cates that only one dimension has been used to com-
pute the output.

In order to train the weights, we can use the LMS
learning algorithm (Widrow and Hoff, 1960) to reduce

the mean-squared output error E[(y — §*})?] by

Aan =7(y - ﬁll)én(xl) (%)

where v is a small rate term. Given sufficient input
samples z;, this algorithm will converge until the av-
erage value E[Aay] = 0 for all n. The output 31! will
then be the best linear approximation to y based on
the values ¢n(z1).

If y cannot be well approximated using only the value
of 2, then there will be some residual error (y — 3}“1).
Although this error will be uncorrelated with ¢,(z1)
for all n, the variances E{(Aa,)?] will be non-zero, in-
dicating that there is pressure to change the weights.
Although on average this pressure is 0, for particu-
lar instances the output error would be reduced if the
weights could be either larger or smaller. We can
thus improve the approximation of y by allowing the
weights to vary based on information from the z, di-
mension. Suppose we pick r; to be the value of n for
which E[(Aay)?] is largest. We now want to add a

term N
Kar, = Zarx,n‘ﬁn(-'@) (6)
n=1

to the weight o, which varies with 2, (see figure 1).
We use the LMS rule to learn the weights ar,n, ac-

cording to

Ao-'rl,n = Aar, ¢n(32) (7)
where the “delta” term is given by Ac,,. This is equal
to

1Y = 9)éri (21)Pn(z2) 8)

and we see that the error term for the product basis
function ¢,, (z1)én(z2) is exactly the term which the
regular LMS rule would supply. The approximation at
the output is now

= 44, (21)ha,

N
= 37“1 + @, (1:1) Z ar,,n¢n(z2)

n=1

This procedure can be followed for every value of n at
each of the p dimensions. This leads to the following
recursive learning rule:

Aag
Aay,

7(y—9)
(Y = 9)én(z1)

I

Basis-Function Trees for Approximation in High-Dimensional Spaces

= (Aao)ér,(z1)
Aarz S, = 7(y - 37)¢l"| (xl)¢"2 (222)
= (Aah)¢":(z2)
Aafx yenfddr & (Aafh---»"d)¢"4+| (xd+1)

This formula makes it clear that the weight correc-
tion term Aay,, ., functions like the error term
v(y—9) for the next “layer”, since the update equation
for ay,,..,re,n can be thought of as performing LMS
learning with the target being given by Aay,,.. r,-
The weights from successive basis functions are being
trained to correct the weights of previous ones based
on the context specified by additional dimensions of
the input.

Note that this network structure is not limited to any
particular set of basis functions. Any basis at all could
have been used, and the choice of basis will determine
the approximation ability of the network and the num-
ber of nodes needed to attain a given accuracy. Other
possible bases include a Fourier basis along each di-
mension (the nodes will represent diagonally oriented
filters), the eigenvectors of the input distribution (the
nodes will represent cross-products of orthogonal out-
puts), the analog value z4 along each dimension (the
nodes will represent monomials, and the network will
find a polynomial approximation to y), or the individ-
ual bits of the binary representation of each input. If
the basis is formed by dividing each dimension into
disjoint regions along sharp boundaries, then the al-
gorithm is exactly equivalent to a “k-d tree”. The al-
gorithm can thus be thought of as a generalization of
the k-d tree to arbitrary overlapping or non-orthogonal
bases.

The resulting network forms a tree of depth p where
each node has N children. If the tree is completed,
then the approximation § will contain all terms of the
form er,,...r,@r(21) - - dr,(zp) and thus has at least
as much approximation power as equation 1. 7 also
contains additional terms involving combinations of
fewer than p dimensions, and thus may have more ap-
proximating power.

However, if the tree is grown to its full size, there will
be more coefficients than in equation 1, and this leads
to more computational work. The work is decreased
only if a sufficiently good approximation can be gained
without growing the full tree. It thus makes sense to
grow a subtree to modify a weight only when changing
that weight would make a significant contribution to
decreasing the output error for the network.

3 GROWING THE TREE

Since the ability of this type of network to save compu-
tation depends upon selectively growing the tree struc-

ture, the selection rule for determining when to create
a subtree will determine the overall performance. Un-
fortunately, there is no general way to determine the
optimal next subtree to grow. In the algorithm above,
it was suggested that a tree be grown beneath the leaf
of the current tree with maximum error variance given

by
E[(Aer,..r)?] (9)

where the maximization is carried out between leaves
at all depths d.

If we assume that the existing tree is fixed and the new
subtree is made complete down to p—d levels, then the
decrease in expected error at the output Ef(y —)%
will be proportional to (9). In practice, it may not be
practical to complete the subtree so that the weight
error variance (9) is reduced to zero, but this error
nevertheless is proportional to the maximal effect on
the expected output error which a subtree at this node
could have. It thus provides an upper bound on the
usefulness of a partially grown subtree.

Unfortunately, because this heuristic is determined by
the effectiveness of a theoretically perfect complete
subtree, it does not tell us where to place the next
single-layer subtree. In addition, if the desired y can-
not in fact be approximated using this set of radial ba-
sis functions (or if there is significant noise), equation 9
will not predict the maximum effect of a subtree on the
output. The subtree selection heuristic described here
is thus intended culy as a suggestion, and it is hoped
that in particular applications more reliable selection
methods could be found.

4 EXAMPLES

4.1 Predicting the Mackey-Glass Equation

As a simple example of performance, I will attempt
to predict future values of the Mackey-Glass chaotic
differential delay equation

5 02s(t—30)
= T+ 219z — 30)

as suggested by (Farmer and Sidorowich, 1989, La-
pedes and Farber, 1988). Many other authors have
used networks to solve the same problem, includ-
ing (Weigend et al, 1990, Farmer and Sidorowich,
1989, Moody, 1989, Moody and Darken, 1989, La-
pedes and Farber, 1988). I use the same parameters
and method of error estimation as in (Farmer and
Sidorowich, 1989) The network has six-dimensional
input z(t — 6n) for n = 0,...,5. Each input value
is coded using 20 elements from the Fourier basis
sin(wz),cos(wz), w = 1,...,10, as suggested in
(Sanger, 1990). The task is for the network to learn to
predict z(14-6) while observing the continuously evolv-
ing time series. A new subtree was added (below the
leaf with maximal error variance) every 400 time steps.

—0.1z(t)

147

148 Sanger

A

0.2

0 600 800

Figure 2. Mackey-Glass time series, 6-step ahead predictions (which are indistinguishable from the time series
here), and iterated prediction time series up to 600 time steps into the future. The network has converged for
42,400 samples.

1.0

0.0

0 600 800

Figure 3. Iterated predictions for the Mackey-Glass equativn, shuwing normalized mean-squared error as a
function of prediction time up to 600 steps into the future.

Basis-Function Trees for Approximation in High-Dimens. onal Spaces

Although the predictions and the true values are visu-
ally indistinguishable after only 20 subtrees have been
added, the network was grown to 106 subtrees (about
40 minutes on a sparcstation) so that iterated predic-
tions could be made. The 6-step normalized mean-
squared error (NMSE, as defined in (Lapedes and Far-
ber, 1988)) was 0.025, and iterated predictions 400
time steps into the future hac NMSE < 0.5. Figure 2
shows the time series, 6-step predictions, and 600 step
iterated prediction time-series. Figure 3 shows NMSE
as a function of iterated prediction time.

4.2 Nonlinear Image Filtering

For an example with higher-dimensional input, I ap-
plied the network to nonlinear smoothing of noisy im-
ages. 8-bit images of two faces were corrupted with
additive random noise chosen from a uniform disuri-
bution between -64 and +63. The task was to predict
the correct pixel value at the center of a 7x7 block of
pixels, given only the 49 noisy pixel values. This is
therefore a 49-dimensional problem. The network is
given randomly selected 7x7 blocks of a noisy image
as training inputs, and the correct center pixel (with-
out noise) as the target output. A second image which
did not provide training data was used to test rzner-
alization.

The network used a “bit-basis™ of 16 basis functions
per pixel consisting of the eight bits of the binary
greylevel and their complements. While this basis is
not particularly well-suited to the problem since it
does not necessarily lead to smooth approximations,
it has nice computational properties. In particular,
no multiplications are ever performed in the network.
Forward propagation consists of adding together all
weights for which there exists an uninterrupted path
of 1's at the nodes to the root (any 0 on this path would
“multiply” the weight and cause it to have no effect.)
Further, all weights were chosen to be integer-valued,
so that weight updating involved only incremen* and
decrement operations. The network ocutput was scaled
by a factor of 128 to slow down the learning rate.

Examples were chosen from random points throughout
the training image, and noise was added independently
to each example. A new subtree was added every 2000
examples, and the network was trained for a total of
40000 examples (20 subtrees). Figure 4 shows the orig-
inal image, noisy image, fillered image, and residual
error after only a single layer network has been built.
This approximation is not much better than the op-
timal linear filter. Figure 5 shows the filtered inage
after 40 subtrees have been added, and demonstrates
improved eage and detail resolution.

5 DISCUSSION

This formulation of basis function training has several
advantages over mor. standard methods. It was moti-
vated by an attempt to save computational work when
approximating fi .ns which can be calculated from
only a few dimens. s, and in this case both the learn-
ing time and the time required to compute the output
 are reduced. If a minimum error is specified for ap-
proximation, then just enough @’s can be calculated to
achieve this criterion, and further terms do not need
to be computed even if they do contribute.

An additional use for this network structure occurs
when new dimensions may be added by the addition
of, for example, new sensors. It is possible to construct
the network so that the weights which have already
been learried do not need to be re-learned to incorpo-
rate the new sensors. (Further improvement may be
gained by modifying existing weights, but it will not
be necessary to start over from scratch.)

As described here, the algorithm imposes an order on
the dimensions, and if the dimension z, is the most
useful, the entire tree will have to be grown merely to
access it. To avoid this problem, one can provide the

entire basis set {¢n(z4) ‘,i;ll"._."’l’v at each level. This
increases the size of the network by a factor of p, but
it eliminates the need to choose an ordering of the
dimensions, and hopefully will reduce the depth of the
required tree.

There are several other network algorithms which are
related to the one proposed here. Basis function ap-
proximation is a well-known technique in statistics,
as is approximation by polynomials of increasing or-
der (Gabor, 1961). The Perceptron algorithm (Rosen-
blatt, 1962) and Backp:cpagation (Rumelhart et al.,
1986) are related since they are both variants of the
LMS rule (Widrow and Hoff, 1960). There are sev-
eral algoiithms which grow similar tree structures
(Breiman et al., 1984, Sun et al., 1988, Bentley, 1975,
Knerr ef al,, 1990, Tenorio and Lee, 1989, Fahlman
and Lebiere, 1990), althuugh most (except (Fahlman
and Lebiere, 1990)) are intended for classification tasks
rather than approximation. There also exist algo-
rithms for which the output of one network controls
the behavior of another (Jacobs et al., 1990, Hinton et
al., 1986). Perhaps the most closely related algorithm
is the MARS algorithm (Friedman, 1988) which builds
a tree of outdegree 2 using basis functions which are
truncated polynomials. The tree structure is grown at
each level by testing all possible subtrees and selecting
the best according to a “lack of fit” criterion to the
data.

The work I have presented allows a sunple shortcut
for approximating .ertain types of functions with a
certain type of basis function networh. It is easy to
implement and forms a direct extension of standard

149

Figure 4- Nonlinear filtering with a single-layer tree. Top is training image, bottom is test image. From left to
right are the original image, the noise-corrupted image, the filtered reconstruction, and the residual error.

<

Figure 5: Nonlinear filtering with 20 subtrees. Top is training image, bottom is test image.

Basis-Function Trees for Approximation in High-Dimensional Spaces

implementations of the LMS algorithm. It does not
solve the “curse of dimensionality”, but in applications
it may make the use of basis function networks for
high-dimensional input spaces practical.

Acknowledgements

This work started during a course taught at MIT by Chris
Atkeson, Michael Jordan, and Marc Raibert. The image
filtering task was first suggested to me by Ted Adelson,
and Matthew Turk kindly provided the face images. This
report describes .esearch done within the laboratory of Dr.
Emilio Bizzi in the department of Brain and Cognitive Sci-
ences at MIT. The author was supported during this work
by the division of Health Sciences and Technology, and by
NIH grants 5R37AR26710 and 5SR01NS09343 to Dr. Bizzi.
Parts of this report have been simultaneously submitted
for publication in Neural Computation.

References

Bentley J. H., 1975, Multidimensional binary search
trees used for associated searching, Communications

ACM, 18(9):509-517.

Breiman L., Friedman J., Olshen R., Stone C. J., 1984,
Classification and Regression Trees, Wadsworth Bel-
mont, California.

Fahlman S. E., Lebiere C., 1990, The cascade-
correlation learning architecture, Technical Report
CMU-CS-90-100, Carnegie Mellon School of Computer
Science, Pittsburgh.

Farmer J. D., Sidorowich J. J., 1989, Predicting
chaotic dynamics, In Kelso J. A. S., Mandell A. J,,
Shlesinger M. F., ed.s, Dynamic Palierns 1n Complez
Systems, pages 265-292, World Scientific.

Friedman J. H., 1988, Multivariate adaptive regression
splines, Technical Report 102, Stanford Univ. Lab for
Computational Statistics.

Gabor D., 1961, A universal nonlinear filter, predic-
tor, and simulator which optimizes itself by a learning
process, Proc. IEE, 108B:422-438.

Hinton G. E., McLelland J. L., Rumethart D. E.,
1986, Distributed representations, In McLelland J. L.,
Rumethart D. E., The PDP Research Group , ed.s,
Parallel Distributed Processing, pages 77-109, MIT
Press, Cambridge, MA.

Jacobs R. A., Jordan M. 1., Barto A. G., 1990, Task
decomposition through competition in a modular con-
nectionist architecture: The what and where vision
tasks, Technical Report COINS TR 90-27, U. Mass.,
Ambherst.

Klopfenstein R. W., Sverdlove R., 1983, Approxima-
tion by uniformly spaced gaussian functions, In Chui
C. K., Schumaker L. L., Ward J. D., ed.s, Approzima-
tion Theory IV, pages 575-580, Academic Press.

Knerr S., Personnaz L., Dreyfus G., 1990, Single-layer
learning revisited. A stepwise procedure for building
and training a neural network, manuscript.

Lapedes A., Farber R., 1988, How neural nets work,
In Anderson D. Z., ed., Neural Information Process-
ing Systems, pages 442-456, Am. Inst. Physics, NY,
Proceedings of the Denver, 1987 Conference.

Moody J., Darken C., 1989, Fast learning in networks
of Locally-Tuned processing units, Neural Computa-
tion, 1:281-294.

Moody J., 1989, Fast learning in Multi-Resolution hi

erarchies, In Touretzky D. S., ed., Advances 1n Neural
Information Processing Systems I, pages 29-39, Mor-
gan Kaufmann, San Mateo, CA.

Poggio T., Girosi F., 1989, A theory of networks for
approximation and learning, MIT AI Memo 1140.

Powell M. J. D., 1987, Radial basis functions for mul-
tivariable interpolation: A review, In Mason J. C.,

Cox M. G., ed.s, Algorithms for Approzimation, pages
143-167, Clarendon Press, Oxford.

Rosenblatt F., 1962, Prnciples of Neurodynamics,
Spartan Books, New York.

Rumelhart D. E., Hinton G. E., Williams R. J., 1986,
Learning internal representations by error propaga-
tion, In Parallel Distributed Processing, chapter 8,
pages 318-362, MIT Press, Cambridge, MA.

Sanger T. D., 1990, Learning nonlinear features using
eigenvectors of radial basis functions, Abstracts of the

Neural Networks for Computing conference, Snowbird
UT.

Sun G. Z., Lee Y. C., Chen H. H., 1988, A novel
net that learns sequential decision process, In An-
derson D. Z., ed., Neural Information Processing Sys-
tems, pages 760~766, American Institute of Physics,
New York.

Tenorio M. F., Lee W.-T., 1989, Self organizing neural
network for optimum supervised learning, Technical
Report TR-EE 89-30, Purdue Univ. School of Elec.
Eng.

Weigend A. S., Huberman B. A., Rumelhart D. E.,
1990, Predicting the future. A connectionist approach,

Technical Report PDP-90-01, Stanfurd PDP Research
Group, submitted to Int. J. Neural Systems.

Widrow B., Hoff M. E., 1960, Adaptive switching cir-

cuits, In IRE WESCON Conv. Record, Part 4, pages
96-104.

151

Effects of Circuit Parameters on Convergence of
Trinary Update Back-Propagation

Randy L. Shimabukure
Naval Ocean Systems Center
San Diego CA 92152-5000

Abstract

This paper discusses an error back-propagation
learning rule that hmits weight updates to onc of
three values: a small positive increment, a small
negative increment, or zero. This rule is motivated
by the relative case with which it may be
implemented in clectronic circuitry. The cffect
on the convergence rate of this rule of iikely
circuit characteristics such as multiplication
nonlinecarity and function approximation are
investigated. Results show convergence is still
possible over a range of parameters even with
these expected circuit constraints.

1. INTRODUCTION

There are currently many eflorts underway to implement
neural network models n analog or hybrid analog/digital
integrated circuitry. While somc have designed circuitry
10 take advantage of device physics [1,2] many architectures
and algorithms have developed with primary regard given
their computational capabilities or their suitability for
modeling cognitive or ncurobiological processes, rather
than their suitability for implementation. Nonetheless, a
number of experimental efforts at implecmentations, in
addition to those cited above, have been repurted recently
[3-9] Some researchers have used fixed interconnection
weights between processing units [6], while uthers have
addressed the problem of modifiable weight circuitry [3-
5,7,10-12] which is required for a network that is adaptive
or programmable after manufacture.

Another focus of current research 1s on the mductive
capabulities of adaptive neural network models. Thesc
employ "learning” algorithms, for modificauon of weight
values based upon data presented to the network. Only a
few cfforts at implementation of adaptive networks with

Patrick A. Shoemaker
Naval Ocean Systems Center
San Diego CA 92152-5000

Clark C. Guest
Univ.Calif.San Diego
San Diego CA 92093

Michael J. Carlin
Naval Ocean Systems Center
San Diego CA 92152-5000

circuitry to carry out the leaming process included on-chip
[3,4] have been reporied. Furman et al. have described an
effort to implement the back-propagation learning algorithm
(13}, using circuitry for weight modification and storage
that includes a dynamic memory cell.

We have investigated the use of a floating-gate MOS
device as a modifiable and non-volatle mechanism for
storage of weight values in analog Aruficial Neural Network
(ANN) circuitry {12,14]. In such a device, charge stored
on an electrically isolated piece of conductor s used to
represent a weight value. However, precise control of
increments or rate of change of this charge, as would be
required by many learning rules, is difficult to achieve
with simple circuitry. In addition, if a unique change were
to be made 1o each weight in parallel across an entire
network, then complicated control circuitry would have to
be replicated at cach weight circuit, requiring a large area
of silicon.

The difficultics assovated with computing and imposing
graded weight updates 1n parallel in analog hardware have
led us tu investigate simplified parallel learmng procedures
in which weight changes are very coarsely quantized. Some
prevedents for this approach are found in the stmulation
study of Peterson and Hartman {15], which examned the
effect of update quantization 1010 two states gncrement of
decrement) on the performance of a mean ficld theory
learming algonthm, and in the hardware smplementation of
a stochastie learming network [3] whuse hybnid digital/analog
weights arc also subject to fixed increments or decrements
at each step in the learning process. In a previous study,
{16} we examined a quantized form of back-propagation
where weight updates are limited 10 one of three values: an
increment, a decrement of the same m